Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation with multiplicative noise

IF 0.8 4区 数学 Q2 MATHEMATICS
Qingkun Xiao, Hongjun Gao
{"title":"Stochastic attractor bifurcation for the two-dimensional Swift-Hohenberg equation with multiplicative noise","authors":"Qingkun Xiao, Hongjun Gao","doi":"10.58997/ejde.2023.20","DOIUrl":null,"url":null,"abstract":"This article concerns the dynamical transitions of the stochastic Swift-Hohenberg equation with multiplicative noise on a two-dimensional domain (-L,L) times (-L, L). With α and L regarded as parameters, we show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation near the critical points, and the impact of noise on stochastic bifurcation of the Swift-Hohenberg equation. We find the approximation representation of the manifold and the corresponding reduced systems for stochastic Swift-Hohenberg equation when L2 and √2L1 are close together.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"27 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.20","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This article concerns the dynamical transitions of the stochastic Swift-Hohenberg equation with multiplicative noise on a two-dimensional domain (-L,L) times (-L, L). With α and L regarded as parameters, we show that the approximate reduced system corresponding to the invariant manifold undergoes a stochastic pitchfork bifurcation near the critical points, and the impact of noise on stochastic bifurcation of the Swift-Hohenberg equation. We find the approximation representation of the manifold and the corresponding reduced systems for stochastic Swift-Hohenberg equation when L2 and √2L1 are close together.
带乘性噪声的二维Swift-Hohenberg方程的随机吸引子分岔
本文研究了二维(-L,L)次(-L,L)域上带有乘性噪声的随机Swift-Hohenberg方程的动力学跃迁。以α和L为参数,证明了不变流形对应的近似约简系统在临界点附近发生随机草叉分岔,以及噪声对Swift-Hohenberg方程随机分岔的影响。我们找到了随机Swift-Hohenberg方程在L2和√2L1接近时流形的近似表示和相应的约简系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信