H. Gernandt, F. Martínez Pería, F. Philipp, C. Trunk
{"title":"On Characteristic Invariants of Matrix Pencils and Linear Relations","authors":"H. Gernandt, F. Martínez Pería, F. Philipp, C. Trunk","doi":"10.1137/22m1535449","DOIUrl":null,"url":null,"abstract":"The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank-one perturbations.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"30 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1535449","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank-one perturbations.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.