RF-RFE-SMOTE: A DoS And DDoS Attack Detection Framework

Nora Rashid Najam, Razan Abdulhammed Abduljawad
{"title":"RF-RFE-SMOTE: A DoS And DDoS Attack Detection Framework","authors":"Nora Rashid Najam, Razan Abdulhammed Abduljawad","doi":"10.56286/ntujet.v2i2.436","DOIUrl":null,"url":null,"abstract":"Denial of service and Distributed denial of service (Dos/DDos) attacks continue to be one of the most significant dangers in cybersecurity. Many efforts are being put into developing defenses against these types of attacks. The tools used by attackers to perform these types of attacks increase day-to-day. Thus, a countermeasure is necessary. For this reason, this thesis utilized one of the most recent datasets (CSE-CICIDS2018 and CIC-DDoS2019) containing most Dos/DDoS attacks. This study proposed a framework based on Machine Learning for detecting denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks. The framework comprises three main modules: feature selection method using Random Forest—Recursive Feature Elimination (RF-RFE), handling the Imbalanced class distributions using Synthetic Minority Oversampling Technique (SMOTE), and classification. This study used five classifiers to make comparisons that include Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Linear and Quadratic Discriminant Analysis (LDA, QDA)”. Framework empirical findings reveal that the RF-RFE_SMOTE_RF outperformed all other models by obtaining an accuracy of 100% for CSE-CIC-IDS2018 and 0.99% for CIC-DDoS2019.","PeriodicalId":500723,"journal":{"name":"NTU Journal of Engineering and Technology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NTU Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56286/ntujet.v2i2.436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Denial of service and Distributed denial of service (Dos/DDos) attacks continue to be one of the most significant dangers in cybersecurity. Many efforts are being put into developing defenses against these types of attacks. The tools used by attackers to perform these types of attacks increase day-to-day. Thus, a countermeasure is necessary. For this reason, this thesis utilized one of the most recent datasets (CSE-CICIDS2018 and CIC-DDoS2019) containing most Dos/DDoS attacks. This study proposed a framework based on Machine Learning for detecting denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks. The framework comprises three main modules: feature selection method using Random Forest—Recursive Feature Elimination (RF-RFE), handling the Imbalanced class distributions using Synthetic Minority Oversampling Technique (SMOTE), and classification. This study used five classifiers to make comparisons that include Random Forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Linear and Quadratic Discriminant Analysis (LDA, QDA)”. Framework empirical findings reveal that the RF-RFE_SMOTE_RF outperformed all other models by obtaining an accuracy of 100% for CSE-CIC-IDS2018 and 0.99% for CIC-DDoS2019.
RF-RFE-SMOTE: DoS和DDoS攻击检测框架
拒绝服务和分布式拒绝服务(Dos/DDos)攻击仍然是网络安全中最重要的危险之一。人们正在努力开发针对这类攻击的防御措施。攻击者用于执行这些类型攻击的工具每天都在增加。因此,有必要制定对策。出于这个原因,本文使用了包含大多数Dos/DDoS攻击的最新数据集之一(CSE-CICIDS2018和CIC-DDoS2019)。本研究提出了一个基于机器学习的框架,用于检测拒绝服务(DoS)和分布式拒绝服务(DDoS)攻击。该框架包括三个主要模块:基于随机森林-递归特征消除(RF-RFE)的特征选择方法、基于合成少数派过采样技术(SMOTE)的不平衡类分布处理方法和分类方法。本研究使用五种分类器进行比较,包括随机森林(RF)、朴素贝叶斯(NB)、逻辑回归(LR)和线性和二次判别分析(LDA, QDA)。框架实证结果表明,RF-RFE_SMOTE_RF优于所有其他模型,CSE-CIC-IDS2018的准确率为100%,CIC-DDoS2019的准确率为0.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信