{"title":"Review of Rydberg Spectral Line Formation in Plasmas","authors":"Andrey Yu. Letunov, Valery S. Lisitsa","doi":"10.3390/atoms11100133","DOIUrl":null,"url":null,"abstract":"The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hnα (Δn=1) and Hnβ (Δn=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hnα and Hnβ transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark–Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"25 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11100133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hnα (Δn=1) and Hnβ (Δn=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hnα and Hnβ transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark–Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.
AtomsPhysics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍:
Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions