{"title":"Large-Eddy-Simulation of Turbulent Non-Premixed Hydrogen Combustion Using the Filtered Tabulated Chemistry Approach","authors":"Samuel Dillon, Renaud Mercier, Benoît Fiorina","doi":"10.1115/1.4063790","DOIUrl":null,"url":null,"abstract":"Abstract With air traffic expected to grow 5% annually until the year 2030, alternative fuels such as hydrogen are being investigated in order to tackle the current environmental crisis. Due to safety concerns, future hydrogen combustion chambers will require new designs of injection systems and are expected to operate under multi-mode combustion regimes. From a Large-Eddy-Simulation (LES) perspective, a prerequisite for the shift towards new hy- drogen combustion chamber technologies is a robust turbulent combustion model capable of functioning in non-premixed condi- tions. Turbulent combustion modeling using flame front filtering is a well-developed strategy in premixed combustion (Filtered- TAbulated Chemistry for Large-Eddy-Simulation - F-TACLES). This approach has been extended to non-premixed flames how- ever, it suffers from high flame filter size sensitivity. Moreover, thin hydrogen flame fronts will result in lower resolution on the LES grid, potentially amplifying this issue. In order to address the feasibility of the non-premixed F-TACLES model applied to hydrogen fuel, simple 1-D and 2-D laminar counterflow diffusion flames are computed. The model is then tested on the 3-D Sandia hydrogen jet flame with a Reynolds number of 10000. Simulations and a-priori tests show that tabulated sub-grid-scale correction terms are stiff and can result in nonphysical results, however the model is capable of correctly reproducing non-premixed flame structures for small filter sizes.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063790","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With air traffic expected to grow 5% annually until the year 2030, alternative fuels such as hydrogen are being investigated in order to tackle the current environmental crisis. Due to safety concerns, future hydrogen combustion chambers will require new designs of injection systems and are expected to operate under multi-mode combustion regimes. From a Large-Eddy-Simulation (LES) perspective, a prerequisite for the shift towards new hy- drogen combustion chamber technologies is a robust turbulent combustion model capable of functioning in non-premixed condi- tions. Turbulent combustion modeling using flame front filtering is a well-developed strategy in premixed combustion (Filtered- TAbulated Chemistry for Large-Eddy-Simulation - F-TACLES). This approach has been extended to non-premixed flames how- ever, it suffers from high flame filter size sensitivity. Moreover, thin hydrogen flame fronts will result in lower resolution on the LES grid, potentially amplifying this issue. In order to address the feasibility of the non-premixed F-TACLES model applied to hydrogen fuel, simple 1-D and 2-D laminar counterflow diffusion flames are computed. The model is then tested on the 3-D Sandia hydrogen jet flame with a Reynolds number of 10000. Simulations and a-priori tests show that tabulated sub-grid-scale correction terms are stiff and can result in nonphysical results, however the model is capable of correctly reproducing non-premixed flame structures for small filter sizes.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.