Scaling of Lean Aeronautical Gas Turbine Combustors

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simon Gövert, Pascal Gruhlke, Thomas Behrendt, Bertram Janus
{"title":"Scaling of Lean Aeronautical Gas Turbine Combustors","authors":"Simon Gövert, Pascal Gruhlke, Thomas Behrendt, Bertram Janus","doi":"10.1115/1.4063776","DOIUrl":null,"url":null,"abstract":"Abstract A numerical procedure is presented for the scaling of lean aeronautical gas turbine combustors to different thrust classes. The procedure considers multiple operating points and aims for a self-similar flow field with respect to a reference configuration. The developed scaling approach relies on an optimization-based workflow which involves automated geometry and grid generation, unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and post-processing. Kriging is applied as a meta model to identify new sets of geometrical parameters. A scaling function based on pressure loss, axial location of heat release, pilot air split and the temperature profile at the combustor exit is proposed. A generic internally-staged lean-burn high pressure aeronautical combustor has been designed to serve as a first verification test case with reactive flow characteristics comparable to real combustion chambers. The burner geometry is parameterized by 23 free parameters which are altered within the scaling process. The developed procedure is applied to scale the combustor to a lower thrust class considering multiple operating points simultaneously: take-off, approach and idle. In total, 65 different combustor variants have been evaluated within the scaling procedure. The final combustor configuration, scaled to a lower thrust class, shows good agreement to the reference configuration in terms of the scaling targets and reasonably resembles the emission indices. Integrating the scaling procedure into the design process of future combustion systems could reduce the required design iterations and thereby contribute to significantly reduced development times and costs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063776","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A numerical procedure is presented for the scaling of lean aeronautical gas turbine combustors to different thrust classes. The procedure considers multiple operating points and aims for a self-similar flow field with respect to a reference configuration. The developed scaling approach relies on an optimization-based workflow which involves automated geometry and grid generation, unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and post-processing. Kriging is applied as a meta model to identify new sets of geometrical parameters. A scaling function based on pressure loss, axial location of heat release, pilot air split and the temperature profile at the combustor exit is proposed. A generic internally-staged lean-burn high pressure aeronautical combustor has been designed to serve as a first verification test case with reactive flow characteristics comparable to real combustion chambers. The burner geometry is parameterized by 23 free parameters which are altered within the scaling process. The developed procedure is applied to scale the combustor to a lower thrust class considering multiple operating points simultaneously: take-off, approach and idle. In total, 65 different combustor variants have been evaluated within the scaling procedure. The final combustor configuration, scaled to a lower thrust class, shows good agreement to the reference configuration in terms of the scaling targets and reasonably resembles the emission indices. Integrating the scaling procedure into the design process of future combustion systems could reduce the required design iterations and thereby contribute to significantly reduced development times and costs.
精益航空燃气轮机燃烧器的缩放
摘要提出了一种针对不同推力等级的航空燃气轮机燃烧室瘦身的数值计算方法。该程序考虑了多个操作点,并旨在获得相对于参考配置的自相似流场。开发的缩放方法依赖于基于优化的工作流,该工作流包括自动几何和网格生成、非定常reynolds -average Navier-Stokes (URANS)模拟和后处理。Kriging被用作元模型来识别新的几何参数集。提出了一种基于压力损失、热释放轴向位置、导风劈裂和燃烧室出口温度分布的标度函数。设计了一种通用的内级稀薄燃烧高压航空燃烧室,作为第一个验证测试案例,其反应流特性与真实燃烧室相当。燃烧器几何形状由23个自由参数参数化,这些参数在缩放过程中改变。应用所开发的程序将燃烧室扩展到一个较低的推力等级,同时考虑多个操作点:起飞、进近和怠速。总共有65种不同的燃烧器变体在缩放程序中进行了评估。最终的燃烧室构型,按比例缩小到较低的推力等级,在标度目标方面与参考构型表现出良好的一致性,并且与排放指标相当接近。将缩放过程集成到未来燃烧系统的设计过程中可以减少所需的设计迭代,从而大大减少开发时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信