Dora Buzas, H Adrian Bunzel, Oskar Staufer, Emily J Milodowski, Grace L Edmunds, Joshua C Bufton, Beatriz V Vidana Mateo, Sathish K N Yadav, Kapil Gupta, Charlotte Fletcher, Maia Kavanagh Williamson, Alexandra Harrison, Ufuk Borucu, Julien Capin, Ore Francis, Georgia Balchin, Sophie Hall, Mirella Vivoli Vega, Fabien Durbesson, Srikanth Lingappa, Renaud Vincentelli, Joe Roe, Linda Wooldridge, Rachel Burt, J L Ross Anderson, Adrian J Mulholland, Jonathan Hare, Mick Bailey, Andrew D Davidson, Adam Finn, David Morgan, Jamie Mann, Joachim Spatz, Frederic Garzoni, Christiane Schaffitzel, Imre Berger
{"title":"<i>In vitro</i> generated antibodies guide thermostable ADDomer nanoparticle design for nasal vaccination and passive immunization against SARS-CoV-2","authors":"Dora Buzas, H Adrian Bunzel, Oskar Staufer, Emily J Milodowski, Grace L Edmunds, Joshua C Bufton, Beatriz V Vidana Mateo, Sathish K N Yadav, Kapil Gupta, Charlotte Fletcher, Maia Kavanagh Williamson, Alexandra Harrison, Ufuk Borucu, Julien Capin, Ore Francis, Georgia Balchin, Sophie Hall, Mirella Vivoli Vega, Fabien Durbesson, Srikanth Lingappa, Renaud Vincentelli, Joe Roe, Linda Wooldridge, Rachel Burt, J L Ross Anderson, Adrian J Mulholland, Jonathan Hare, Mick Bailey, Andrew D Davidson, Adam Finn, David Morgan, Jamie Mann, Joachim Spatz, Frederic Garzoni, Christiane Schaffitzel, Imre Berger","doi":"10.1093/abt/tbad024","DOIUrl":null,"url":null,"abstract":"Abstract Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.","PeriodicalId":36655,"journal":{"name":"Antibody Therapeutics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibody Therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/abt/tbad024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Background Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.