{"title":"A kinetic theory approach to second harmonic generation by high power laser in magnetized plasma with nonextensive distribution","authors":"S. Shabani, T. Mohsenpour, A. Ghadi","doi":"10.1080/17455030.2023.2268754","DOIUrl":null,"url":null,"abstract":"AbstractThe present study presents a kinetic theory approach to second-harmonic generation (SHG) through high-power laser in collisionless plasma with nonextensively-distributed electrons. The study applied a relativistic Vlasov equation to obtain nonlinear current density and second-harmonic (SH) conversion efficiency. It was observed that the power conversion efficiency (PCE) of second-harmonic generation depends on plasma and laser parameters such as dimensionless cyclotron frequency, plasma density, normalized thermal velocity, the nonextensive q-parameter, and laser intensity. Moreover, cyclotron frequency associated with plasma electrons has been found to play an important role in increasing the power conversion efficiency of SH generation.KEYWORDS: Kinetic theorySelf-focusingSH generationVlasov equationPower conversion efficiency Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":23598,"journal":{"name":"Waves in Random and Complex Media","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waves in Random and Complex Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17455030.2023.2268754","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThe present study presents a kinetic theory approach to second-harmonic generation (SHG) through high-power laser in collisionless plasma with nonextensively-distributed electrons. The study applied a relativistic Vlasov equation to obtain nonlinear current density and second-harmonic (SH) conversion efficiency. It was observed that the power conversion efficiency (PCE) of second-harmonic generation depends on plasma and laser parameters such as dimensionless cyclotron frequency, plasma density, normalized thermal velocity, the nonextensive q-parameter, and laser intensity. Moreover, cyclotron frequency associated with plasma electrons has been found to play an important role in increasing the power conversion efficiency of SH generation.KEYWORDS: Kinetic theorySelf-focusingSH generationVlasov equationPower conversion efficiency Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Waves in Random and Complex Media (formerly Waves in Random Media ) is a broad, interdisciplinary journal that reports theoretical, applied and experimental research related to any wave phenomena.
The field of wave phenomena is all-pervading, fast-moving and exciting; more and more, researchers are looking for a journal which addresses the understanding of wave-matter interactions in increasingly complex natural and engineered media. With its foundations in the scattering and propagation community, Waves in Random and Complex Media is becoming a key forum for research in both established fields such as imaging through turbulence, as well as emerging fields such as metamaterials.
The Journal is of interest to scientists and engineers working in the field of wave propagation, scattering and imaging in random or complex media. Papers on theoretical developments, experimental results and analytical/numerical studies are considered for publication, as are deterministic problems when also linked to random or complex media. Papers are expected to report original work, and must be comprehensible and of general interest to the broad community working with wave phenomena.