Ahmed Farid Ibrahim, Moaz Hiba, Salaheldin Elkatatny, Abdulwahab Ali
{"title":"Estimation of tensile and uniaxial compressive strength of carbonate rocks from well-logging data: artificial intelligence approach","authors":"Ahmed Farid Ibrahim, Moaz Hiba, Salaheldin Elkatatny, Abdulwahab Ali","doi":"10.1007/s13202-023-01707-1","DOIUrl":null,"url":null,"abstract":"Abstract The uniaxial compressive strength (UCS) and tensile strength (T0) are crucial parameters in field development and excavation projects. Traditional lab-based methods for directly measuring these properties face practical challenges. Therefore, non-destructive techniques like machine learning have gained traction as innovative tools for predicting these parameters. This study leverages machine learning methods, specifically random forest (RF) and decision tree (DT), to forecast UCS and T0 using real well-logging data sourced from a Middle East reservoir. The dataset comprises 2600 data points for model development and over 600 points for validation. Sensitivity analysis identified gamma-ray, compressional time (DTC), and bulk density (ROHB) as key factors influencing the prediction. Model accuracy was assessed using the correlation coefficient ( R ) and the absolute average percentage error (AAPE) against actual parameter profiles. For UCS prediction, both RF and DT achieved R values of 0.97, with AAPE values at 0.65% for RF and 0.78% for DT. In T0 prediction, RF yielded R values of 0.99, outperforming DT's 0.93, while AAPE stood at 0.28% for RF and 1.4% for DT. These outcomes underscore the effectiveness of both models in predicting strength parameters from well-logging data, with RF demonstrating superior performance. These models offer the industry an economical and rapid tool for accurately and reliably estimating strength parameters from well-logging data.","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"26 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13202-023-01707-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The uniaxial compressive strength (UCS) and tensile strength (T0) are crucial parameters in field development and excavation projects. Traditional lab-based methods for directly measuring these properties face practical challenges. Therefore, non-destructive techniques like machine learning have gained traction as innovative tools for predicting these parameters. This study leverages machine learning methods, specifically random forest (RF) and decision tree (DT), to forecast UCS and T0 using real well-logging data sourced from a Middle East reservoir. The dataset comprises 2600 data points for model development and over 600 points for validation. Sensitivity analysis identified gamma-ray, compressional time (DTC), and bulk density (ROHB) as key factors influencing the prediction. Model accuracy was assessed using the correlation coefficient ( R ) and the absolute average percentage error (AAPE) against actual parameter profiles. For UCS prediction, both RF and DT achieved R values of 0.97, with AAPE values at 0.65% for RF and 0.78% for DT. In T0 prediction, RF yielded R values of 0.99, outperforming DT's 0.93, while AAPE stood at 0.28% for RF and 1.4% for DT. These outcomes underscore the effectiveness of both models in predicting strength parameters from well-logging data, with RF demonstrating superior performance. These models offer the industry an economical and rapid tool for accurately and reliably estimating strength parameters from well-logging data.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies