Huei Yeong Lim, Nor Adilla Rashidi, Muhamad Farhan Haqeem Othman, Intan Syafiqah Ismail, Syazmi Zul Arif Hakimi Saadon, Bridgid Lai Fui Chin, Suzana Yusup, Mohammad Nurizat Rahman
{"title":"Recent advancement in thermochemical conversion of biomass to biofuel","authors":"Huei Yeong Lim, Nor Adilla Rashidi, Muhamad Farhan Haqeem Othman, Intan Syafiqah Ismail, Syazmi Zul Arif Hakimi Saadon, Bridgid Lai Fui Chin, Suzana Yusup, Mohammad Nurizat Rahman","doi":"10.1080/17597269.2023.2261788","DOIUrl":null,"url":null,"abstract":"AbstractBiofuel’s carbon neutrality possesses great potential in decarbonizing existing fossil fuels dependency. Biofuel can be produced from various low-cost and renewable wastes including agricultural residues and sewage sludge, through various methods like thermochemical and biological pathways, producing solid, liquid, or gaseous biofuels. Among the two, thermochemical methods offer significantly shorter reaction time and higher versatility toward feedstocks as compared to the biological route. Though, there are challenges caused by the biomass heterogeneity and low biofuel quality in thermochemical conversion methods. Hence, this review aims to discuss recent advancements of thermochemical conversion technologies of biomass to biofuel, including torrefaction, pyrolysis, transesterification, hydrothermal processing, and gasification. The challenges encountered in the thermochemical conversion methods are discussed and attempts made in resolving it are also reported. Furthermore, potentials of solid, liquid, and gaseous biofuels are also presented in terms of biomass resources availability, and applications in industry and transportation sectors. Overall, sustainable production and utilisation of biofuels are one highly potential alternative towards a net zero carbon future.Keywords: Biofuelbiomasscarbon neutralitythermochemical conversionwastes Competing interestThe authors declare no competing interest.Data availabilityNo datasets were generated or analysed during the current study.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Ministry of Higher Education, Malaysia under the HICoE research grant (cost centre: 015ME0-014).","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"24 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2261788","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractBiofuel’s carbon neutrality possesses great potential in decarbonizing existing fossil fuels dependency. Biofuel can be produced from various low-cost and renewable wastes including agricultural residues and sewage sludge, through various methods like thermochemical and biological pathways, producing solid, liquid, or gaseous biofuels. Among the two, thermochemical methods offer significantly shorter reaction time and higher versatility toward feedstocks as compared to the biological route. Though, there are challenges caused by the biomass heterogeneity and low biofuel quality in thermochemical conversion methods. Hence, this review aims to discuss recent advancements of thermochemical conversion technologies of biomass to biofuel, including torrefaction, pyrolysis, transesterification, hydrothermal processing, and gasification. The challenges encountered in the thermochemical conversion methods are discussed and attempts made in resolving it are also reported. Furthermore, potentials of solid, liquid, and gaseous biofuels are also presented in terms of biomass resources availability, and applications in industry and transportation sectors. Overall, sustainable production and utilisation of biofuels are one highly potential alternative towards a net zero carbon future.Keywords: Biofuelbiomasscarbon neutralitythermochemical conversionwastes Competing interestThe authors declare no competing interest.Data availabilityNo datasets were generated or analysed during the current study.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Ministry of Higher Education, Malaysia under the HICoE research grant (cost centre: 015ME0-014).
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.