Personal Mobility Detection through Application of YOLO Deep Learning Algorithm to Drone Images

Q3 Earth and Planetary Sciences
Junseok Kim, Taehyun Lee, Junho Yeom
{"title":"Personal Mobility Detection through Application of YOLO Deep Learning Algorithm to Drone Images","authors":"Junseok Kim, Taehyun Lee, Junho Yeom","doi":"10.7848/ksgpc.2023.41.4.239","DOIUrl":null,"url":null,"abstract":"최근 단거리 교통수단으로 개인형 이동장치와 이를 사용하는 사용자의 이용률이 빠르게 증가하고 있다. 또한, 현대도시의 소비 형태가 공유경제의 형태로 변화하며 관련 공유 플랫폼이 개발됨에 따라 개인형 이동장치인 PM (Personal Mobility)이 공유 전동킥보드 형태로 나타났으며, 이와 동시에 공유 PM 서비스를 제공하는 업체도 같이 증가하고 있다. 그러나 PM이 서비스 제공 업체마다 종류가 다르고, 지역마다 그 업체의 수가 달라 통합적인 관리가 더욱 어려운 상황이다. 따라서 본 논문에서는 드론을 통해 수집한 영상에서 YOLOv3 알고리즘으로 여러 업체의 PM 객체를 탐지하여, 통합적인 관리의 활용 가능성이 있는지 분석하고 정확도 평가를 수행하였다. 실험지역 내 PM이 포함된 드론 영상을 수집하고 PM 객체를 레이블링하여 딥러닝 모델을 학습시켜 PM을 탐지하였다. 정확도 평가 결과 재현율 80%, 정밀도 87%의 탐지 정확도와 0.73의 AP값을 얻었으며 이를 통해 드론 영상에서 YOLOv3 알고리즘을 활용하여 PM 검출을 수행하는 것이 가능함을 확인하였다.","PeriodicalId":39099,"journal":{"name":"Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7848/ksgpc.2023.41.4.239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

최근 단거리 교통수단으로 개인형 이동장치와 이를 사용하는 사용자의 이용률이 빠르게 증가하고 있다. 또한, 현대도시의 소비 형태가 공유경제의 형태로 변화하며 관련 공유 플랫폼이 개발됨에 따라 개인형 이동장치인 PM (Personal Mobility)이 공유 전동킥보드 형태로 나타났으며, 이와 동시에 공유 PM 서비스를 제공하는 업체도 같이 증가하고 있다. 그러나 PM이 서비스 제공 업체마다 종류가 다르고, 지역마다 그 업체의 수가 달라 통합적인 관리가 더욱 어려운 상황이다. 따라서 본 논문에서는 드론을 통해 수집한 영상에서 YOLOv3 알고리즘으로 여러 업체의 PM 객체를 탐지하여, 통합적인 관리의 활용 가능성이 있는지 분석하고 정확도 평가를 수행하였다. 실험지역 내 PM이 포함된 드론 영상을 수집하고 PM 객체를 레이블링하여 딥러닝 모델을 학습시켜 PM을 탐지하였다. 정확도 평가 결과 재현율 80%, 정밀도 87%의 탐지 정확도와 0.73의 AP값을 얻었으며 이를 통해 드론 영상에서 YOLOv3 알고리즘을 활용하여 PM 검출을 수행하는 것이 가능함을 확인하였다.
YOLO深度学习算法在无人机图像中的应用
最近,作为短途交通工具,个人移动装置和使用它的用户的利用率正在迅速增加。另外,随着现代城市的消费形态转变为共享经济形态,相关共享平台的开发,个人移动装置PM (Personal Mobility)以共享电动kick board形态出现,与此同时提供共享PM服务的企业也在增加。但是,每个提供PM服务的企业种类都不一样,每个地区的企业数量也不同,因此很难进行综合管理。因此本论文在通过无人机收集的影像中,利用YOLOv3算法探测多个企业的PM对象,分析是否具有综合管理的活用可能性,并进行准确度评价。收集实验区域内包含PM的无人机影像,标记PM对象,学习深度学习模型,探测PM。准确度评价的结果是,再现率80%、精度87%的探测准确度和0.73的AP值,可以在无人机影像中利用YOLOv3算法进行PM检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography
Journal of the Korean Society of Surveying Geodesy Photogrammetry and Cartography Earth and Planetary Sciences-Earth and Planetary Sciences (all)
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信