Attention Based-ConvLSTM-DNN Networks for Fine Dust Concentration Prediction

Joon-Min Lee, Kyeong-Tae Kim, Jae-Young Choi
{"title":"Attention Based-ConvLSTM-DNN Networks for Fine Dust Concentration Prediction","authors":"Joon-Min Lee, Kyeong-Tae Kim, Jae-Young Choi","doi":"10.9717/kmms.2023.26.8.911","DOIUrl":null,"url":null,"abstract":"Air pollution, particularly fine dust, poses a significant threat to public health and necessitates accurate prediction models for effective mitigation strategies. In this paper, we propose a so-called attention-based ConvLSTM-DNN networks for fine dust concentration prediction. Our proposed model integrates the feature extraction capabilities of a 2D Convolutional Neural Network (CNN) with the long-term memory retention of an LSTM, capturing spatial and temporal dependencies in the input data. We apply an attention mechanism to enhance the model","PeriodicalId":16316,"journal":{"name":"Journal of Korea Multimedia Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Multimedia Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9717/kmms.2023.26.8.911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution, particularly fine dust, poses a significant threat to public health and necessitates accurate prediction models for effective mitigation strategies. In this paper, we propose a so-called attention-based ConvLSTM-DNN networks for fine dust concentration prediction. Our proposed model integrates the feature extraction capabilities of a 2D Convolutional Neural Network (CNN) with the long-term memory retention of an LSTM, capturing spatial and temporal dependencies in the input data. We apply an attention mechanism to enhance the model
基于注意力的convlstm - dnn网络微尘浓度预测
空气污染,特别是微细粉尘,对公众健康构成重大威胁,必须建立准确的预测模型,以便实施有效的缓解战略。在本文中,我们提出了一种所谓的基于注意力的ConvLSTM-DNN网络用于细尘浓度预测。我们提出的模型将2D卷积神经网络(CNN)的特征提取能力与LSTM的长期记忆保留相结合,捕获输入数据中的空间和时间依赖性。我们应用注意机制来增强模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信