{"title":"Attention Based-ConvLSTM-DNN Networks for Fine Dust Concentration Prediction","authors":"Joon-Min Lee, Kyeong-Tae Kim, Jae-Young Choi","doi":"10.9717/kmms.2023.26.8.911","DOIUrl":null,"url":null,"abstract":"Air pollution, particularly fine dust, poses a significant threat to public health and necessitates accurate prediction models for effective mitigation strategies. In this paper, we propose a so-called attention-based ConvLSTM-DNN networks for fine dust concentration prediction. Our proposed model integrates the feature extraction capabilities of a 2D Convolutional Neural Network (CNN) with the long-term memory retention of an LSTM, capturing spatial and temporal dependencies in the input data. We apply an attention mechanism to enhance the model","PeriodicalId":16316,"journal":{"name":"Journal of Korea Multimedia Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Multimedia Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9717/kmms.2023.26.8.911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution, particularly fine dust, poses a significant threat to public health and necessitates accurate prediction models for effective mitigation strategies. In this paper, we propose a so-called attention-based ConvLSTM-DNN networks for fine dust concentration prediction. Our proposed model integrates the feature extraction capabilities of a 2D Convolutional Neural Network (CNN) with the long-term memory retention of an LSTM, capturing spatial and temporal dependencies in the input data. We apply an attention mechanism to enhance the model