Peiyun Wang, Chengyi Su, Jiaojiao Wu, Yuxin Xie, Jiangtao Fan, Jingyan Wang, Wenkai Hui, Hua Yang, Wei Gong
{"title":"Response of Photosynthetic Characteristics to Different Salicylic Acid Concentrations in Relation to Waterlogging Resistance in Zanthoxylum armatum","authors":"Peiyun Wang, Chengyi Su, Jiaojiao Wu, Yuxin Xie, Jiangtao Fan, Jingyan Wang, Wenkai Hui, Hua Yang, Wei Gong","doi":"10.7235/hort.20230032","DOIUrl":null,"url":null,"abstract":"Zanthoxylum armatum (Rutaceae) is an important spice and a traditional medicinal plant in southwest China. Owing to its shallow root system, it is highly susceptible to waterlogging stress. To evaluate how an exogenous salicylic acid (SA) application reduces photosynthetic damage in Z. armatum under waterlogging stress conditions, the content of photosynthetic pigments and gas exchange and chlorophyll fluorescence parameters were studied under different SA concentrations (0, 1 and 2 mM) and different numbers of waterlogging days (1, 2 and 3 d) to identify the mechanisms underlying the seedlings’ waterlogging response. The results showed that waterlogging significantly affects the photosynthetic characteristics in leaves. An exogenous SA application increased the contents of photosynthetic pigments as well as the transpiration rate (Tr), net leaf photosynthetic rate (Pn), stomatal conductance (Gs), water use efficiency (WUE), actual quantum efficiency (ΦPSII), photosystem II (PSII) maximum quantum efficiency (Fv/Fm), PSII photochemical efficiency in light (Fv'/Fm'), and electron transport rate (ETR), whereas the treatment decreased the intercellular carbon dioxide concentration (Ci), non-photochemical quenching coefficient (NPQ) and minimum fluorescence (Fo). Therefore, the SA application helps improve the photosynthetic efficiency and reduce photodamage to Z. armatum in the event of waterlogging stress.","PeriodicalId":17858,"journal":{"name":"Korean Journal of Horticultural Science & Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Horticultural Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7235/hort.20230032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Zanthoxylum armatum (Rutaceae) is an important spice and a traditional medicinal plant in southwest China. Owing to its shallow root system, it is highly susceptible to waterlogging stress. To evaluate how an exogenous salicylic acid (SA) application reduces photosynthetic damage in Z. armatum under waterlogging stress conditions, the content of photosynthetic pigments and gas exchange and chlorophyll fluorescence parameters were studied under different SA concentrations (0, 1 and 2 mM) and different numbers of waterlogging days (1, 2 and 3 d) to identify the mechanisms underlying the seedlings’ waterlogging response. The results showed that waterlogging significantly affects the photosynthetic characteristics in leaves. An exogenous SA application increased the contents of photosynthetic pigments as well as the transpiration rate (Tr), net leaf photosynthetic rate (Pn), stomatal conductance (Gs), water use efficiency (WUE), actual quantum efficiency (ΦPSII), photosystem II (PSII) maximum quantum efficiency (Fv/Fm), PSII photochemical efficiency in light (Fv'/Fm'), and electron transport rate (ETR), whereas the treatment decreased the intercellular carbon dioxide concentration (Ci), non-photochemical quenching coefficient (NPQ) and minimum fluorescence (Fo). Therefore, the SA application helps improve the photosynthetic efficiency and reduce photodamage to Z. armatum in the event of waterlogging stress.
期刊介绍:
Horticultural Science and Technology (abbr. Hortic. Sci. Technol., herein ‘HST’; ISSN, 1226-8763), one of the two official journals of the Korean Society for Horticultural Science (KSHS), was launched in 1998 to provides scientific and professional publication on technology and sciences of horticultural area. As an international journal, HST is published in English and Korean, bimonthly on the last day of even number months, and indexed in ‘SCIE’, ‘SCOPUS’ and ‘CABI’. The HST is devoted for the publication of technical and academic papers and review articles on such arears as cultivation physiology, protected horticulture, postharvest technology, genetics and breeding, tissue culture and biotechnology, and other related to vegetables, fruit, ornamental, and herbal plants.