Mapping User Behaviors: A Machine Learning Perspective on the NAVER Entry Programming Activity Community

Woodo Lee, Jeahee Yoo, Jaekwoun Shim
{"title":"Mapping User Behaviors: A Machine Learning Perspective on the NAVER Entry Programming Activity Community","authors":"Woodo Lee, Jeahee Yoo, Jaekwoun Shim","doi":"10.9728/jcc.2023.06.5.1.547","DOIUrl":null,"url":null,"abstract":"Understanding human behavior, particularly in digital realms where anonymity often dominates, is imperative for fostering positive online communities and facilitating effective communication. Deeply rooted in innate tendencies, this behavior becomes particularly complex to interpret in such online environments. Despite these complexities, we demonstrate that the collective behavior within digital communities can be deciphered using machine learning techniques. In our study, we analyzed data from a prominent online community dedicated to enhancing the coding skills of its members. We categorized users into four distinct classes using five different machine learning techniques, achieving an accuracy rate exceeding 95%. These high-precision findings not only reveal intricate patterns of interaction but also set a benchmark for future studies. By uncovering and understanding these behavioral dynamics, our research holds significant potential to shape online community management strategies, inform digital education platforms, and enhance user experience in similar online settings.","PeriodicalId":472913,"journal":{"name":"Journal of contents computing (Online)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contents computing (Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9728/jcc.2023.06.5.1.547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding human behavior, particularly in digital realms where anonymity often dominates, is imperative for fostering positive online communities and facilitating effective communication. Deeply rooted in innate tendencies, this behavior becomes particularly complex to interpret in such online environments. Despite these complexities, we demonstrate that the collective behavior within digital communities can be deciphered using machine learning techniques. In our study, we analyzed data from a prominent online community dedicated to enhancing the coding skills of its members. We categorized users into four distinct classes using five different machine learning techniques, achieving an accuracy rate exceeding 95%. These high-precision findings not only reveal intricate patterns of interaction but also set a benchmark for future studies. By uncovering and understanding these behavioral dynamics, our research holds significant potential to shape online community management strategies, inform digital education platforms, and enhance user experience in similar online settings.
映射用户行为:NAVER入口编程活动社区的机器学习视角
理解人类的行为,特别是在匿名往往占主导地位的数字领域,对于培育积极的在线社区和促进有效沟通至关重要。这种行为深深根植于天生的倾向,在这样的网络环境中,这种行为变得特别复杂。尽管存在这些复杂性,但我们证明了数字社区中的集体行为可以使用机器学习技术进行解密。在我们的研究中,我们分析了来自一个致力于提高其成员编码技能的著名在线社区的数据。我们使用五种不同的机器学习技术将用户分为四个不同的类别,准确率超过95%。这些高精度的发现不仅揭示了相互作用的复杂模式,而且为未来的研究奠定了基准。通过发现和理解这些行为动态,我们的研究在塑造在线社区管理策略、为数字教育平台提供信息以及增强类似在线环境中的用户体验方面具有重要潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信