{"title":"Beyond accuracy: The advantages of the k-nearest neighbor algorithm for hotel revenue management forecasting","authors":"Timothy Webb, Misuk Lee, Zvi Schwartz, Ira Vouk","doi":"10.1177/13548166231201199","DOIUrl":null,"url":null,"abstract":"Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.","PeriodicalId":23204,"journal":{"name":"Tourism Economics","volume":"86 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/13548166231201199","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Revenue management (RM) systems forecast demand and optimize prices to maximize a hotel’s revenue. The RM function operates in coordination between a system and an analyst. Systems provide recommendations while analysts review the forecasts and prices to approve or make subjective adjustments. In many cases the recommendations are a “black box” with little insight regarding how recommendations are derived. This article proposes the k-Nearest Neighbor (k-NN) algorithm as a forecasting approach that can transition the “black box” to a “glass box.” The benefits of the k-NN are discussed in detail and compared with neural networks. The analysis is conducted on 35 hotels in partnership with a leading RM service provider. The results indicate similar performance for both techniques, leading to an important discussion on model evaluation outside of accuracy. In particular, the article discusses some of the unique advantages k-NN provides for the RM discipline.
期刊介绍:
Tourism Economics, published quarterly, covers the business aspects of tourism in the wider context. It takes account of constraints on development, such as social and community interests and the sustainable use of tourism and recreation resources, and inputs into the production process. The definition of tourism used includes tourist trips taken for all purposes, embracing both stay and day visitors. Articles address the components of the tourism product (accommodation; restaurants; merchandizing; attractions; transport; entertainment; tourist activities); and the economic organization of tourism at micro and macro levels (market structure; role of public/private sectors; community interests; strategic planning; marketing; finance; economic development).