{"title":"Analysis of Improved Particle Swarm Algorithm in Wireless Sensor Network Localization","authors":"Yafeng Chen","doi":"10.4108/ew.3431","DOIUrl":null,"url":null,"abstract":"WSN localization occupies an important position in the practical application of WSN. To complete WSN localization efficiently and accurately, the article constructs the objective function based on the target node location constraints and maximum likelihood function. It avoids premature convergence through the PSO algorithm based on chaos search and backward learning. Based on linear fitting, the node-flipping fuzzy detection method is proposed to perform the judgment of node flipping fuzzy phenomenon. And the detection method is combined with the localization algorithm, and the final WSN localization algorithm is obtained after multi-threshold processing. After analysis, it is found that compared with other PSO algorithms, the MTLFPSO algorithm used in the paper has better performance with the highest accuracy of 83.1%. Different threshold values will affect the favorable and error detection rates of different WSNs. For type 1 WSNs, the positive detection rate of the 3-node network is the highest under the same threshold value, followed by the 4-node network; when the threshold value is 7.5 (3 ), the positive detection rate of the 3-node network is 97.8%. Different numbers of anchor nodes and communication radius will have specific effects on the number of definable nodes and relative localization error, in which the lowest relative localization error of the MTLFPSO algorithm is 3.4% under different numbers of anchor nodes; the lowest relative localization error of MTLFPSO algorithm is 2.5% under different communication radius. The article adopts the method to achieve accurate and efficient localization of WSNs.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.3431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
WSN localization occupies an important position in the practical application of WSN. To complete WSN localization efficiently and accurately, the article constructs the objective function based on the target node location constraints and maximum likelihood function. It avoids premature convergence through the PSO algorithm based on chaos search and backward learning. Based on linear fitting, the node-flipping fuzzy detection method is proposed to perform the judgment of node flipping fuzzy phenomenon. And the detection method is combined with the localization algorithm, and the final WSN localization algorithm is obtained after multi-threshold processing. After analysis, it is found that compared with other PSO algorithms, the MTLFPSO algorithm used in the paper has better performance with the highest accuracy of 83.1%. Different threshold values will affect the favorable and error detection rates of different WSNs. For type 1 WSNs, the positive detection rate of the 3-node network is the highest under the same threshold value, followed by the 4-node network; when the threshold value is 7.5 (3 ), the positive detection rate of the 3-node network is 97.8%. Different numbers of anchor nodes and communication radius will have specific effects on the number of definable nodes and relative localization error, in which the lowest relative localization error of the MTLFPSO algorithm is 3.4% under different numbers of anchor nodes; the lowest relative localization error of MTLFPSO algorithm is 2.5% under different communication radius. The article adopts the method to achieve accurate and efficient localization of WSNs.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.