Optimal Tuning of a Bounded e-Modified Adaptive Control Law using a Particle Swarm Optimization algorithm

Olga Lidia Jiménez-Morales, Diego Tristán-Rodriguez, Ruben Garrido, Efrén Mezura-Montes
{"title":"Optimal Tuning of a Bounded e-Modified Adaptive Control Law using a Particle Swarm Optimization algorithm","authors":"Olga Lidia Jiménez-Morales, Diego Tristán-Rodriguez, Ruben Garrido, Efrén Mezura-Montes","doi":"10.29057/icbi.v11iespecial2.10713","DOIUrl":null,"url":null,"abstract":"This paper presents the gain tuning of an adaptive control law by means of Particle Swarm Optimization (PSO). The restrictions imposed on the particles in the PSO are obtained from the stability analysis of the adaptive control law. In this way, the PSO produces particles associated with optimal gains that simultaneously guarantee closed-loop stability and the minimization of the Fitness Function. The adaptive controller employs the velocity and acceleration of the desired trajectory signal for constructing the regressor vector used in the updated law. In addition, a new bounding technique is proposed for the estimated parameters allowing them to remain within certain prescribed limits. The performance of the adaptive law tuned using the PSO is evaluated by experiments on a low-cost servo system.","PeriodicalId":476815,"journal":{"name":"PÄDI boletín científico de ciencias básicas e ingenierías del ICBI","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PÄDI boletín científico de ciencias básicas e ingenierías del ICBI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29057/icbi.v11iespecial2.10713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the gain tuning of an adaptive control law by means of Particle Swarm Optimization (PSO). The restrictions imposed on the particles in the PSO are obtained from the stability analysis of the adaptive control law. In this way, the PSO produces particles associated with optimal gains that simultaneously guarantee closed-loop stability and the minimization of the Fitness Function. The adaptive controller employs the velocity and acceleration of the desired trajectory signal for constructing the regressor vector used in the updated law. In addition, a new bounding technique is proposed for the estimated parameters allowing them to remain within certain prescribed limits. The performance of the adaptive law tuned using the PSO is evaluated by experiments on a low-cost servo system.
基于粒子群优化算法的有界e-修正自适应控制律的最优调整
提出了一种基于粒子群算法的自适应控制律的增益整定方法。通过对自适应控制律的稳定性分析,得到了粒子群中粒子的约束条件。通过这种方式,PSO产生具有最优增益的粒子,同时保证闭环稳定性和适应度函数的最小化。自适应控制器利用期望轨迹信号的速度和加速度来构造用于更新律的回归向量。此外,提出了一种新的边界技术,使估计参数保持在一定的规定范围内。通过在低成本伺服系统上的实验,对采用粒子群调谐的自适应律的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信