Enow Takang Achuo Albert, Ngalle Hermine Bille, Bell Joseph Martin, Ngonkeu Mangaptche Eddy Leonard
{"title":"Integrating genetic markers and adiabatic quantum machine learning to improve disease resistance-based marker assisted plant selection","authors":"Enow Takang Achuo Albert, Ngalle Hermine Bille, Bell Joseph Martin, Ngonkeu Mangaptche Eddy Leonard","doi":"10.25081/jsa.2023.v7.8556","DOIUrl":null,"url":null,"abstract":"The goal of this research was to create a more accurate and efficient method for selecting plants with disease resistance using a combination of genetic markers and advanced machine learning algorithms. A multi-disciplinary approach incorporating genomic data, machine learning algorithms and high-performance computing was employed. First, genetic markers highly associated with disease resistance were identified using next-generation sequencing data and statistical analysis. Then, an adiabatic quantum machine learning algorithm was developed to integrate these markers into a single predictor of disease susceptibility. The results demonstrate that the integrative use of genetic markers and adiabatic quantum machine learning significantly improved the accuracy and efficiency of disease resistance-based marker-assisted plant selection. By leveraging the power of adiabatic quantum computing and genetic markers, more effective and efficient strategies for disease resistance-based marker-assisted plant selection can be developed.","PeriodicalId":488607,"journal":{"name":"Journal of scientific agriculture","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of scientific agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25081/jsa.2023.v7.8556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of this research was to create a more accurate and efficient method for selecting plants with disease resistance using a combination of genetic markers and advanced machine learning algorithms. A multi-disciplinary approach incorporating genomic data, machine learning algorithms and high-performance computing was employed. First, genetic markers highly associated with disease resistance were identified using next-generation sequencing data and statistical analysis. Then, an adiabatic quantum machine learning algorithm was developed to integrate these markers into a single predictor of disease susceptibility. The results demonstrate that the integrative use of genetic markers and adiabatic quantum machine learning significantly improved the accuracy and efficiency of disease resistance-based marker-assisted plant selection. By leveraging the power of adiabatic quantum computing and genetic markers, more effective and efficient strategies for disease resistance-based marker-assisted plant selection can be developed.