Some Consequences of the Valley Delta Conjectures

Pub Date : 2023-09-11 DOI:10.1007/s00026-023-00663-1
Michele D’Adderio, Alessandro Iraci
{"title":"Some Consequences of the Valley Delta Conjectures","authors":"Michele D’Adderio, Alessandro Iraci","doi":"10.1007/s00026-023-00663-1","DOIUrl":null,"url":null,"abstract":"Abstract Haglund et al. (Trans Am Math Soc 370(6):4029–4057, 2018) introduced their Delta conjectures , which give two different combinatorial interpretations of the symmetric function $$\\Delta '_{e_{n-k-1}} e_n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mi>Δ</mml:mi> <mml:msub> <mml:mi>e</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mi>k</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>′</mml:mo> </mml:msubsup> <mml:msub> <mml:mi>e</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> in terms of rise-decorated or valley-decorated labelled Dyck paths. While the rise version has been recently proved (D’Adderio and Mellit in Adv Math 402:108342, 2022; Blasiak et al. in A Proof of the Extended Delta Conjecture, arXiv:2102.08815 , 2021), not much is known about the valley version. In this work, we prove the Schröder case of the valley Delta conjecture, the Schröder case of its square version (Iraci and Wyngaerd in Ann Combin 25(1):195–227, 2021), and the Catalan case of its extended version (Qiu and Wilson in J Combin Theory Ser A 175:105271, 2020). Furthermore, assuming the symmetry of (a refinement of) the combinatorial side of the extended valley Delta conjecture, we deduce also the Catalan case of its square version (Iraci and Wyngaerd 2021).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00026-023-00663-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Haglund et al. (Trans Am Math Soc 370(6):4029–4057, 2018) introduced their Delta conjectures , which give two different combinatorial interpretations of the symmetric function $$\Delta '_{e_{n-k-1}} e_n$$ Δ e n - k - 1 e n in terms of rise-decorated or valley-decorated labelled Dyck paths. While the rise version has been recently proved (D’Adderio and Mellit in Adv Math 402:108342, 2022; Blasiak et al. in A Proof of the Extended Delta Conjecture, arXiv:2102.08815 , 2021), not much is known about the valley version. In this work, we prove the Schröder case of the valley Delta conjecture, the Schröder case of its square version (Iraci and Wyngaerd in Ann Combin 25(1):195–227, 2021), and the Catalan case of its extended version (Qiu and Wilson in J Combin Theory Ser A 175:105271, 2020). Furthermore, assuming the symmetry of (a refinement of) the combinatorial side of the extended valley Delta conjecture, we deduce also the Catalan case of its square version (Iraci and Wyngaerd 2021).

Abstract Image

分享
查看原文
山谷三角洲猜想的一些结果
Haglund et al. (Trans Am Math Soc 370(6): 4029-4057, 2018)介绍了他们的Delta猜想,该猜想给出了对称函数$$\Delta '_{e_{n-k-1}} e_n$$ Δ en - k - 1 ' en的两种不同的组合解释,以上升装饰或山谷装饰的标记Dyck路径。虽然上升版本最近已被证明(D 'Adderio and Mellit in Adv Math 402:108342, 2022;Blasiak等人在《扩展Delta猜想的证明》(A Proof of Extended Delta Conjecture, arXiv:2102.08815, 2021)中指出,对于山谷版本的了解并不多。在这项工作中,我们证明了谷三角洲猜想的Schröder情况,其正方形版本的Schröder情况(Iraci和Wyngaerd In Ann Combin 25(1):195 - 227,2021),以及其扩展版本的加泰罗尼亚情况(Qiu和Wilson In J Combin Theory Ser A 175:105271, 2020)。此外,假设扩展山谷三角洲猜想的组合侧的对称性(一种改进),我们还推导出其方形版本的加泰罗尼亚情况(Iraci和Wyngaerd 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信