The asymptotic equipartition property for a special Markov random field

Pub Date : 2023-09-11 DOI:10.1080/17442508.2023.2255340
Zhiyan Shi, Xiaoyu Zhu
{"title":"The asymptotic equipartition property for a special Markov random field","authors":"Zhiyan Shi, Xiaoyu Zhu","doi":"10.1080/17442508.2023.2255340","DOIUrl":null,"url":null,"abstract":"The asymptotic equipartition property (AEP) plays an important role in establishing lossless source coding theorems and asymptotic coding theorems through the concepts of typical sets and typical sequences in information theory. In this paper, we study the generalized asymptotic equipartition property in the form of moving average for N bifurcating Markov chains indexed by an N-branch Cayley tree, which is a special case of Markov Urandom fields. Firstly, we construct a class of random variables containing a parameter with means of 1, and establish a strong limit theorem for the moving average of multivariate functions of such chains using the Borel–Cantelli lemma. Secondly, we present the strong law of large numbers for the frequencies of occurrence of states of the moving average, as well as the generalized asymptotic equipartition property for N bifurcating Markov chains indexed by an N-branch Cayley tree. As corollaries, we also generalize some known results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2255340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotic equipartition property (AEP) plays an important role in establishing lossless source coding theorems and asymptotic coding theorems through the concepts of typical sets and typical sequences in information theory. In this paper, we study the generalized asymptotic equipartition property in the form of moving average for N bifurcating Markov chains indexed by an N-branch Cayley tree, which is a special case of Markov Urandom fields. Firstly, we construct a class of random variables containing a parameter with means of 1, and establish a strong limit theorem for the moving average of multivariate functions of such chains using the Borel–Cantelli lemma. Secondly, we present the strong law of large numbers for the frequencies of occurrence of states of the moving average, as well as the generalized asymptotic equipartition property for N bifurcating Markov chains indexed by an N-branch Cayley tree. As corollaries, we also generalize some known results.
分享
查看原文
一类特殊马尔可夫随机场的渐近均分性质
渐近均分性(AEP)在利用信息论中的典型集和典型序列的概念建立无损源编码定理和渐近编码定理方面起着重要的作用。本文研究了以N支Cayley树为索引的N个分岔马尔可夫链的移动平均形式的广义渐近均分性质,这是马尔可夫随机域的一种特殊情况。首先构造了一类参数均值为1的随机变量,利用Borel-Cantelli引理建立了该类链多元函数移动平均的强极限定理。其次,我们给出了移动平均状态出现频率的强大数律,以及以N支Cayley树为索引的N个分岔Markov链的广义渐近均分性质。作为推论,我们也推广了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信