Local parameter selection in the C0 interior penalty method for the biharmonic equation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Philipp Bringmann, Carsten Carstensen, Julian Streitberger
{"title":"Local parameter selection in the C<sup>0</sup> interior penalty method for the biharmonic equation","authors":"Philipp Bringmann, Carsten Carstensen, Julian Streitberger","doi":"10.1515/jnma-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0028","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The symmetric 0 interior penalty method is one of the most popular discontinuous Galerkin methods for the biharmonic equation. This paper introduces an automatic local selection of the involved stability parameter in terms of the geometry of the underlying triangulation for arbitrary polynomial degrees. The proposed choice ensures a stable discretization with guaranteed discrete ellipticity constant. Numerical evidence for uniform and adaptive mesh-refinement and various polynomial degrees supports the reliability and efficiency of the local parameter selection and recommends this in practice. The approach is documented in 2D for triangles, but the methodology behind can be generalized to higher dimensions, to non-uniform polynomial degrees, and to rectangular discretizations. An appendix presents the realization of our proposed parameter selection in various established finite element software packages. a detailed documentation of C 0 interior penalty method in.
双调和方程C0内罚法的局部参数选择
对称0内罚法是求解双调和方程最常用的不连续Galerkin方法之一。本文介绍了一种根据任意多项式次下三角剖分的几何形状自动局部选择所涉及的稳定性参数的方法。所提出的选择保证了离散椭圆常数的稳定离散化。均匀自适应网格细化和不同多项式度的数值证据支持了局部参数选择的可靠性和有效性,并在实践中得到了推广。该方法在二维三角形中有文档记录,但背后的方法可以推广到更高的维度,非均匀多项式度和矩形离散化。附录给出了我们提出的参数选择在各种已建立的有限元软件包中的实现。详细说明了c0内部处罚的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信