Efficient continuous kNN join over dynamic high-dimensional data

IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nimish Ukey, Guangjian Zhang, Zhengyi Yang, Binghao Li, Wei Li, Wenjie Zhang
{"title":"Efficient continuous kNN join over dynamic high-dimensional data","authors":"Nimish Ukey, Guangjian Zhang, Zhengyi Yang, Binghao Li, Wei Li, Wenjie Zhang","doi":"10.1007/s11280-023-01204-9","DOIUrl":null,"url":null,"abstract":"Abstract Given a user dataset $$\\varvec{U}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> </mml:math> and an object dataset $$\\varvec{I}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> , a kNN join query in high-dimensional space returns the $$\\varvec{k}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> </mml:math> nearest neighbors of each object in dataset $$\\varvec{U}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> </mml:math> from the object dataset $$\\varvec{I}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> </mml:math> . The kNN join is a basic and necessary operation in many applications, such as databases, data mining, computer vision, multi-media, machine learning, recommendation systems, and many more. In the real world, datasets frequently update dynamically as objects are added or removed. In this paper, we propose novel methods of continuous kNN join over dynamic high-dimensional data. We firstly propose the HDR $$^+$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow /> <mml:mo>+</mml:mo> </mml:msup> </mml:math> Tree, which supports more efficient insertion, deletion, and batch update. Further observed that the existing methods rely on globally correlated datasets for effective dimensionality reduction, we then propose the HDR Forest. It clusters the dataset and constructs multiple HDR Trees to capture local correlations among the data. As a result, our HDR Forest is able to process non-globally correlated datasets efficiently. Two novel optimisations are applied to the proposed HDR Forest, including the precomputation of the PCA states of data items and pruning-based kNN recomputation during item deletion. For the completeness of the work, we also present the proof of computing distances in reduced dimensions of PCA in HDR Tree. Extensive experiments on real-world datasets show that the proposed methods and optimisations outperform the baseline algorithms of naive RkNN join and HDR Tree.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01204-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given a user dataset $$\varvec{U}$$ U and an object dataset $$\varvec{I}$$ I , a kNN join query in high-dimensional space returns the $$\varvec{k}$$ k nearest neighbors of each object in dataset $$\varvec{U}$$ U from the object dataset $$\varvec{I}$$ I . The kNN join is a basic and necessary operation in many applications, such as databases, data mining, computer vision, multi-media, machine learning, recommendation systems, and many more. In the real world, datasets frequently update dynamically as objects are added or removed. In this paper, we propose novel methods of continuous kNN join over dynamic high-dimensional data. We firstly propose the HDR $$^+$$ + Tree, which supports more efficient insertion, deletion, and batch update. Further observed that the existing methods rely on globally correlated datasets for effective dimensionality reduction, we then propose the HDR Forest. It clusters the dataset and constructs multiple HDR Trees to capture local correlations among the data. As a result, our HDR Forest is able to process non-globally correlated datasets efficiently. Two novel optimisations are applied to the proposed HDR Forest, including the precomputation of the PCA states of data items and pruning-based kNN recomputation during item deletion. For the completeness of the work, we also present the proof of computing distances in reduced dimensions of PCA in HDR Tree. Extensive experiments on real-world datasets show that the proposed methods and optimisations outperform the baseline algorithms of naive RkNN join and HDR Tree.

Abstract Image

动态高维数据的高效连续kNN连接
给定一个用户数据集$$\varvec{U}$$ U和一个对象数据集$$\varvec{I}$$ I,高维空间的kNN连接查询从对象数据集$$\varvec{I}$$ I返回数据集$$\varvec{U}$$ U中每个对象的$$\varvec{k}$$ k个最近邻居。kNN连接是许多应用程序中基本且必要的操作,例如数据库、数据挖掘、计算机视觉、多媒体、机器学习、推荐系统等等。在现实世界中,随着对象的添加或删除,数据集经常动态更新。本文提出了动态高维数据上连续kNN连接的新方法。我们首先提出HDR $$^+$$ + Tree,它支持更高效的插入、删除和批量更新。进一步观察到现有方法依赖于全球相关数据集来有效降维,我们提出了HDR森林。它对数据集进行聚类,并构建多个HDR树来捕获数据之间的局部相关性。因此,我们的HDR森林能够有效地处理非全局相关的数据集。提出了两种新的优化方法,包括数据项PCA状态的预计算和数据项删除时基于修剪的kNN重新计算。为了工作的完整性,我们还提出了HDR树中PCA降维计算距离的证明。在真实数据集上的大量实验表明,所提出的方法和优化优于朴素RkNN连接和HDR树的基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Wide Web-Internet and Web Information Systems
World Wide Web-Internet and Web Information Systems 工程技术-计算机:软件工程
CiteScore
7.30
自引率
10.80%
发文量
131
审稿时长
6 months
期刊介绍: World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems. Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信