Kang Yan, Hulin Li, Jian Sun, Qi Xin, Ning Ding, Dan Jiang, Xianghui Meng
{"title":"Optimization numerically for five-pad tilting-pad journal bearings design based on particle swarm","authors":"Kang Yan, Hulin Li, Jian Sun, Qi Xin, Ning Ding, Dan Jiang, Xianghui Meng","doi":"10.1080/10402004.2023.2254348","DOIUrl":null,"url":null,"abstract":"The design of five-pad tilting-pad journal bearings (TPJB) is complicated because of the uncertainty of design parameters which affects the performance of TPJB greatly. In this study, the numerical lubrication model is established to predict the performance of TPJB. Furthermore, a new optimal method combining the lubrication model and particle swarm method with a comprehensive target is brought out, which can obtain the optimal design parameters correctly and rapidly compared with enumeration method. The performance of TPJB is better after optimization, especially the temperature and frictional coefficient decreasing by about 31.1% and 35.8%, respectively. Moreover, different application scenarios of TPJB need different weight factor combinations in the comprehensive target, which is valuable for different design requirements.","PeriodicalId":23315,"journal":{"name":"Tribology Transactions","volume":"139 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10402004.2023.2254348","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The design of five-pad tilting-pad journal bearings (TPJB) is complicated because of the uncertainty of design parameters which affects the performance of TPJB greatly. In this study, the numerical lubrication model is established to predict the performance of TPJB. Furthermore, a new optimal method combining the lubrication model and particle swarm method with a comprehensive target is brought out, which can obtain the optimal design parameters correctly and rapidly compared with enumeration method. The performance of TPJB is better after optimization, especially the temperature and frictional coefficient decreasing by about 31.1% and 35.8%, respectively. Moreover, different application scenarios of TPJB need different weight factor combinations in the comprehensive target, which is valuable for different design requirements.
期刊介绍:
Tribology Transactions contains experimental and theoretical papers on friction, wear, lubricants, lubrication, materials, machines and moving components, from the macro- to the nano-scale.
The papers will be of interest to academic, industrial and government researchers and technologists working in many fields, including:
Aerospace, Agriculture & Forest, Appliances, Automotive, Bearings, Biomedical Devices, Condition Monitoring, Engines, Gears, Industrial Engineering, Lubricants, Lubricant Additives, Magnetic Data Storage, Manufacturing, Marine, Materials, MEMs and NEMs, Mining, Power Generation, Metalworking Fluids, Seals, Surface Engineering and Testing and Analysis.
All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief and, if found suitable for further consideration, are submitted for peer review by independent, anonymous expert referees. All peer review in single blind and submission is online via ScholarOne Manuscripts.