Semantic Super-Resolution Using a Transformer Model

Donghyun Ku, Hanhoon Park
{"title":"Semantic Super-Resolution Using a Transformer Model","authors":"Donghyun Ku, Hanhoon Park","doi":"10.9717/kmms.2023.26.10.1251","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective method to improve the performance of SwinIR, a vision Transformer-based super-resolution neural network model, by introducing a Transformer decoder with learnable category queries. The decoder allows to extract semantic information of each dataset belonging to different categories (e.g., text and face); the semantic information can improve category-specific texture reconstruction in the process of super-resolution. Experiments were conducted using decoders of different architectures to analyze the performance of the proposed method. The experimental results confirm that the use of decoder can improve the quality of super-resolution images produced by SwinIR qualitatively and quantitatively, although improvements may vary depending on the depth of the decoder and how semantic information is applied.","PeriodicalId":16316,"journal":{"name":"Journal of Korea Multimedia Society","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korea Multimedia Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9717/kmms.2023.26.10.1251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an effective method to improve the performance of SwinIR, a vision Transformer-based super-resolution neural network model, by introducing a Transformer decoder with learnable category queries. The decoder allows to extract semantic information of each dataset belonging to different categories (e.g., text and face); the semantic information can improve category-specific texture reconstruction in the process of super-resolution. Experiments were conducted using decoders of different architectures to analyze the performance of the proposed method. The experimental results confirm that the use of decoder can improve the quality of super-resolution images produced by SwinIR qualitatively and quantitatively, although improvements may vary depending on the depth of the decoder and how semantic information is applied.
使用变压器模型的语义超分辨率
本文提出了一种有效的方法,通过引入具有可学习类别查询的Transformer解码器来提高基于视觉Transformer的超分辨率神经网络模型SwinIR的性能。解码器允许提取属于不同类别(如文本和人脸)的每个数据集的语义信息;在超分辨率过程中,语义信息可以改善分类纹理的重建。利用不同结构的解码器进行了实验,分析了所提方法的性能。实验结果证实,解码器的使用可以在定性和定量上提高SwinIR产生的超分辨率图像的质量,尽管改进可能取决于解码器的深度和语义信息的应用方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信