Physics-based models for communications in random complex propagation media, including keyhole effects in MIMO

3区 物理与天体物理 Q1 Engineering
Akira Ishimaru
{"title":"Physics-based models for communications in random complex propagation media, including keyhole effects in MIMO","authors":"Akira Ishimaru","doi":"10.1080/17455030.2022.2128227","DOIUrl":null,"url":null,"abstract":"AbstractExtensive research has been reported on MIMO systems for complex environments. It is noted that many communications studies make use of the channel matrix of transmitters and receivers, signal vectors, SNR, and eigenvalues. However, the channel matrix is often expressed in terms of channel modeling, and the detailed statistical characteristics of the channel in terms of physical characteristics of atmospheric turbulence, particulate matter, and rough surfaces and terrain are often not explicitly shown. This paper discusses the inclusion of expressions of physical characteristics of the random medium in the channel matrix. Therefore, the key point of this paper is that the channel matrix is explicitly given in terms of the actual physical parameters of the random environment using the mutual coherence function and stochastic Green’s functions; we call this a ‘physics-based’ communications model. This paper presents a formulation of physics-based communications models in the presence of a random medium based on analytical statistical EM theory. We use the keyhole MIMO as an example to show the key points of this approach. It is hoped that this study may help extend channel modeling to include analytical statistical EM theory for atmospheric turbulence, ocean turbulence, and rough terrain.KEYWORDS: Channel capacitycommunicationsMIMOrandom media AcknowledgementsThe careful assistance and insights of John Ishimaru are gratefully appreciated.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":23598,"journal":{"name":"Waves in Random and Complex Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waves in Random and Complex Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17455030.2022.2128227","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractExtensive research has been reported on MIMO systems for complex environments. It is noted that many communications studies make use of the channel matrix of transmitters and receivers, signal vectors, SNR, and eigenvalues. However, the channel matrix is often expressed in terms of channel modeling, and the detailed statistical characteristics of the channel in terms of physical characteristics of atmospheric turbulence, particulate matter, and rough surfaces and terrain are often not explicitly shown. This paper discusses the inclusion of expressions of physical characteristics of the random medium in the channel matrix. Therefore, the key point of this paper is that the channel matrix is explicitly given in terms of the actual physical parameters of the random environment using the mutual coherence function and stochastic Green’s functions; we call this a ‘physics-based’ communications model. This paper presents a formulation of physics-based communications models in the presence of a random medium based on analytical statistical EM theory. We use the keyhole MIMO as an example to show the key points of this approach. It is hoped that this study may help extend channel modeling to include analytical statistical EM theory for atmospheric turbulence, ocean turbulence, and rough terrain.KEYWORDS: Channel capacitycommunicationsMIMOrandom media AcknowledgementsThe careful assistance and insights of John Ishimaru are gratefully appreciated.Disclosure statementNo potential conflict of interest was reported by the author(s).
随机复杂传播介质中基于物理的通信模型,包括MIMO中的锁孔效应
摘要针对复杂环境下的MIMO系统进行了广泛的研究。值得注意的是,许多通信研究都利用了发射机和接收机的信道矩阵、信号矢量、信噪比和特征值。然而,通道矩阵通常以通道建模的方式表示,而通道在大气湍流、颗粒物、粗糙表面和地形等物理特征方面的详细统计特征往往没有明确显示。本文讨论了在信道矩阵中包含随机介质物理特性的表达式。因此,本文的重点是利用互相干函数和随机格林函数,用随机环境的实际物理参数显式地给出信道矩阵;我们称之为“基于物理的”通信模型。本文提出了一种基于解析统计电磁理论的随机介质存在下基于物理的通信模型。我们以锁孔MIMO为例来说明这种方法的要点。希望这项研究可以帮助扩展通道建模,包括大气湍流、海洋湍流和崎岖地形的分析统计电磁理论。关键词:信道容量;通信;随机媒体感谢石丸先生的细心协助和真知灼见。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Waves in Random and Complex Media
Waves in Random and Complex Media 物理-物理:综合
自引率
0.00%
发文量
677
审稿时长
3.0 months
期刊介绍: Waves in Random and Complex Media (formerly Waves in Random Media ) is a broad, interdisciplinary journal that reports theoretical, applied and experimental research related to any wave phenomena. The field of wave phenomena is all-pervading, fast-moving and exciting; more and more, researchers are looking for a journal which addresses the understanding of wave-matter interactions in increasingly complex natural and engineered media. With its foundations in the scattering and propagation community, Waves in Random and Complex Media is becoming a key forum for research in both established fields such as imaging through turbulence, as well as emerging fields such as metamaterials. The Journal is of interest to scientists and engineers working in the field of wave propagation, scattering and imaging in random or complex media. Papers on theoretical developments, experimental results and analytical/numerical studies are considered for publication, as are deterministic problems when also linked to random or complex media. Papers are expected to report original work, and must be comprehensible and of general interest to the broad community working with wave phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信