Hannah R. Freeman, Harish Chander, Sachini N. K. Kodithuwakku Arachchige, Alana J. Turner, J. Adam Jones, Zhujun Pan, Christopher Hudson, Adam C. Knight
{"title":"Postural Control Behavior in a Virtual Moving Room Paradigm","authors":"Hannah R. Freeman, Harish Chander, Sachini N. K. Kodithuwakku Arachchige, Alana J. Turner, J. Adam Jones, Zhujun Pan, Christopher Hudson, Adam C. Knight","doi":"10.3390/biomechanics3040043","DOIUrl":null,"url":null,"abstract":"Background: Taking inspiration from the classical 1974, “moving room experiment” by Lee and Aronson, a “virtual moving room paradigm (Vroom)” was designed using virtual reality (VR) to assess postural control behavior. Methods: Thirty healthy adults (age: 21 ± 1 years; height: 166.5 ± 7.3 cm; mass: 71.7 ± 16.2 kg) were tested for postural stability in a virtual moving room paradigm (Vroom). The Vroom consisted of randomized virtual and visual perturbations of the virtual room moving toward and away from the individual, during both unexpected and expected trials. Objective postural sway variables and subjective experiences to VR using the simulator sickness questionnaire as well as balance confidence scale were also assessed and analyzed using a two way (2 × 2 [2 moving room direction (Toward vs. Away) and 2 knowledge of moving room (unexpected vs. expected)] repeated measures analysis of variance (ANOVA), and a one-way repeated measures ANOVA and paired sample t-test, respectively at an alpha level of 0.05. Results: Significantly greater postural sway was observed when the virtual room moved toward the participant than when moving away, and when it moved unexpectedly, compared with the expected moving room. Significantly improved balance confidence with realistic immersion and without simulator sickness was also observed. Conclusions: Our findings provide evidence indicating that the virtual moving room induces postural perturbations that challenge the postural control system, especially when the moving room is unexpected and moves toward the individual. Additionally, increased balance confidence and realistic immersion in the virtual environment with no adverse effects of simulator sickness were observed, providing evidence for the beneficial effects of the Vroom. Thus, the Vroom can be an easy and cost-effective method to expose individuals to realistic, virtual, and visual perturbations that challenge the postural control system and increase balance confidence, with realistic immersion and without adverse effects.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":"6 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3040043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Taking inspiration from the classical 1974, “moving room experiment” by Lee and Aronson, a “virtual moving room paradigm (Vroom)” was designed using virtual reality (VR) to assess postural control behavior. Methods: Thirty healthy adults (age: 21 ± 1 years; height: 166.5 ± 7.3 cm; mass: 71.7 ± 16.2 kg) were tested for postural stability in a virtual moving room paradigm (Vroom). The Vroom consisted of randomized virtual and visual perturbations of the virtual room moving toward and away from the individual, during both unexpected and expected trials. Objective postural sway variables and subjective experiences to VR using the simulator sickness questionnaire as well as balance confidence scale were also assessed and analyzed using a two way (2 × 2 [2 moving room direction (Toward vs. Away) and 2 knowledge of moving room (unexpected vs. expected)] repeated measures analysis of variance (ANOVA), and a one-way repeated measures ANOVA and paired sample t-test, respectively at an alpha level of 0.05. Results: Significantly greater postural sway was observed when the virtual room moved toward the participant than when moving away, and when it moved unexpectedly, compared with the expected moving room. Significantly improved balance confidence with realistic immersion and without simulator sickness was also observed. Conclusions: Our findings provide evidence indicating that the virtual moving room induces postural perturbations that challenge the postural control system, especially when the moving room is unexpected and moves toward the individual. Additionally, increased balance confidence and realistic immersion in the virtual environment with no adverse effects of simulator sickness were observed, providing evidence for the beneficial effects of the Vroom. Thus, the Vroom can be an easy and cost-effective method to expose individuals to realistic, virtual, and visual perturbations that challenge the postural control system and increase balance confidence, with realistic immersion and without adverse effects.