{"title":"Quantification of long-range dependence in hydroclimatic time series: a method-comparison study","authors":"Jingyi Niu, Ping Xie, Yan-Fang Sang, Liping Zhang, Linqian Wu, Yanxin Zhu, Bellie Sivakumar, Jingqun Huo, Deliang Chen","doi":"10.1175/jamc-d-23-0129.1","DOIUrl":null,"url":null,"abstract":"Abstract Accurate evaluation of the long-range dependence in hydroclimatic time series is important for understanding its inherent characteristics. However, the reliability of its evaluation may be questioned, since different methods may yield various outcomes. In this study, we evaluate the performances of seven widely used methods for estimating long-range dependence: absolute moment estimation, difference variance estimation, residuals variance estimation, rescaled range estimation, periodogram estimation, wavelet estimation (WLE), and discrete second derivative estimation (DSDE). We examine the influences of six major factors: data length, mean value, three nonstationary components (trend, jump, and periodicity), and one stationary component (short-range dependence). Results from the Monte-Carlo experiments show that WLE and DSDE have greater credibility than the other five methods. They also reveal that data length, as well as stationary and nonstationary components, have notable influences on the evaluation of long-range dependence. Following it, we use the WLE and DSDE methods to evaluate the long-range dependence of precipitation during 1961–2015 on Tibetan Plateau. The results indicate that the precipitation variability mirrors the long-range dependence of the Indian summer monsoon, but with obvious spatial difference. This result is consistent with the observations made by previous studies, further confirming the superiority of the WLE and DSDE methods. The outcomes from this study have important implications for modeling and prediction of hydroclimatic time series.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":"15 2","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jamc-d-23-0129.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Accurate evaluation of the long-range dependence in hydroclimatic time series is important for understanding its inherent characteristics. However, the reliability of its evaluation may be questioned, since different methods may yield various outcomes. In this study, we evaluate the performances of seven widely used methods for estimating long-range dependence: absolute moment estimation, difference variance estimation, residuals variance estimation, rescaled range estimation, periodogram estimation, wavelet estimation (WLE), and discrete second derivative estimation (DSDE). We examine the influences of six major factors: data length, mean value, three nonstationary components (trend, jump, and periodicity), and one stationary component (short-range dependence). Results from the Monte-Carlo experiments show that WLE and DSDE have greater credibility than the other five methods. They also reveal that data length, as well as stationary and nonstationary components, have notable influences on the evaluation of long-range dependence. Following it, we use the WLE and DSDE methods to evaluate the long-range dependence of precipitation during 1961–2015 on Tibetan Plateau. The results indicate that the precipitation variability mirrors the long-range dependence of the Indian summer monsoon, but with obvious spatial difference. This result is consistent with the observations made by previous studies, further confirming the superiority of the WLE and DSDE methods. The outcomes from this study have important implications for modeling and prediction of hydroclimatic time series.
期刊介绍:
The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.