Elena N. Akimova, Murat A. Sultanov, Vladimir E. Misilov, Yerkebulan Nurlanuly
{"title":"Parallel Algorithm for Solving the Inverse Two-Dimensional Fractional Diffusion Problem of Identifying the Source Term","authors":"Elena N. Akimova, Murat A. Sultanov, Vladimir E. Misilov, Yerkebulan Nurlanuly","doi":"10.3390/fractalfract7110801","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the development of a parallel algorithm for solving the inverse problem of identifying the space-dependent source term in the two-dimensional fractional diffusion equation. For solving the inverse problem, the regularized iterative conjugate gradient method is used. At each iteration of the method, we need to solve the auxilliary direct initial-boundary value problem. By using the finite difference scheme, this problem is reduced to solving a large system of a linear algebraic equation with a block-tridiagonal matrix at each time step. Solving the system takes almost the entire computation time. To solve this system, we construct and implement the direct parallel matrix sweep algorithm. We establish stability and correctness for this algorithm. The parallel implementations are developed for the multicore CPU using the OpenMP technology. The numerical experiments are performed to study the performance of parallel implementations.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"11 7","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110801","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the development of a parallel algorithm for solving the inverse problem of identifying the space-dependent source term in the two-dimensional fractional diffusion equation. For solving the inverse problem, the regularized iterative conjugate gradient method is used. At each iteration of the method, we need to solve the auxilliary direct initial-boundary value problem. By using the finite difference scheme, this problem is reduced to solving a large system of a linear algebraic equation with a block-tridiagonal matrix at each time step. Solving the system takes almost the entire computation time. To solve this system, we construct and implement the direct parallel matrix sweep algorithm. We establish stability and correctness for this algorithm. The parallel implementations are developed for the multicore CPU using the OpenMP technology. The numerical experiments are performed to study the performance of parallel implementations.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.