Integration of Rational Functions

Laxmi Rathour, Dragan Obradovic, Kejal Khatri, Shiv Kant Tiwari, Lakshmi Narayan Mishra, Vishnu Narayan Mishra
{"title":"Integration of Rational Functions","authors":"Laxmi Rathour, Dragan Obradovic, Kejal Khatri, Shiv Kant Tiwari, Lakshmi Narayan Mishra, Vishnu Narayan Mishra","doi":"10.47352/jmans.2774-3047.186","DOIUrl":null,"url":null,"abstract":"A rational function can always be integrated, that is, the integral of such a function is always an elementary function. The integration procedure is complex and consists of four steps: elimination of the common zero-points of the numerator and denominator, reduction to a true rational function, decomposition into partial fractions and integration of the obtained expressions using direct integration, substitution method or partial integration method. Integrating rational functions is important because integrals of rational functions of trigonometric functions as well as integrals of some irrational functions are reduced to integrals of rational functions by appropriate transformations.","PeriodicalId":264018,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A rational function can always be integrated, that is, the integral of such a function is always an elementary function. The integration procedure is complex and consists of four steps: elimination of the common zero-points of the numerator and denominator, reduction to a true rational function, decomposition into partial fractions and integration of the obtained expressions using direct integration, substitution method or partial integration method. Integrating rational functions is important because integrals of rational functions of trigonometric functions as well as integrals of some irrational functions are reduced to integrals of rational functions by appropriate transformations.
有理函数的积分
有理函数总是可以被积分的,也就是说,这样一个函数的积分总是一个初等函数。积分过程很复杂,包括四个步骤:消去分子和分母的公共零点,化简为真有理函数,分解为部分分式,用直接积分法、代换法或部分积分法对得到的表达式进行积分。有理函数的积分之所以重要,是因为有理函数或三角函数的积分,以及一些有理函数的积分,都可以通过适当的变换转化为有理函数的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信