Mohammed Nabeel, Mohanad Mousa, Béla Viskolcz, Béla Fiser, László Vanyorek
{"title":"Recent Advances in Flexible Foam Pressure Sensors: Manufacturing, Characterization, and Applications – a Review","authors":"Mohammed Nabeel, Mohanad Mousa, Béla Viskolcz, Béla Fiser, László Vanyorek","doi":"10.1080/15583724.2023.2262558","DOIUrl":null,"url":null,"abstract":"The dramatic changes the world and the expectations of potential users have pushed researchers working in flexible foam pressure sensor (FFPS) fabrication to develop more affordable and high-performance materials. Among various materials, polymer foamed-based nanocomposites are a preferred choice due to their excellent mechanical properties, good chemical properties, and easy control. Moreover, the use of nanofillers such as carbon nanotubes (CNTs), carbon black (CB), and graphene in the polymer matrix has greatly improved the properties of the sensors. Therefore, this review focuses on the recent advances in FFPS by using different types of nanofillers in shape and structure. Accordingly, developments in the fabrication of FFPS, including dip coating, spray coating, sputtering, and in situ polymerization are also discussed. Special attention has been paid to identifying the underlying mechanism to maximize pressure sensing and improve the performance of FFPS. Suggestions for future developments in the area of sensing devices applied in health monitoring are also presented.","PeriodicalId":20326,"journal":{"name":"Polymer Reviews","volume":"37 1","pages":"0"},"PeriodicalIF":11.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15583724.2023.2262558","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The dramatic changes the world and the expectations of potential users have pushed researchers working in flexible foam pressure sensor (FFPS) fabrication to develop more affordable and high-performance materials. Among various materials, polymer foamed-based nanocomposites are a preferred choice due to their excellent mechanical properties, good chemical properties, and easy control. Moreover, the use of nanofillers such as carbon nanotubes (CNTs), carbon black (CB), and graphene in the polymer matrix has greatly improved the properties of the sensors. Therefore, this review focuses on the recent advances in FFPS by using different types of nanofillers in shape and structure. Accordingly, developments in the fabrication of FFPS, including dip coating, spray coating, sputtering, and in situ polymerization are also discussed. Special attention has been paid to identifying the underlying mechanism to maximize pressure sensing and improve the performance of FFPS. Suggestions for future developments in the area of sensing devices applied in health monitoring are also presented.
期刊介绍:
Polymer Reviews is a reputable publication that focuses on timely issues within the field of macromolecular science and engineering. The journal features high-quality reviews that have been specifically curated by experts in the field. Topics of particular importance include biomedical applications, organic electronics and photonics, nanostructures, micro- and nano-fabrication, biological molecules (such as DNA, proteins, and carbohydrates), polymers for renewable energy and environmental applications, and interdisciplinary intersections involving polymers.
The articles in Polymer Reviews fall into two main categories. Some articles offer comprehensive and expansive overviews of a particular subject, while others zero in on the author's own research and situate it within the broader scientific landscape. In both types of articles, the aim is to provide readers with valuable insights and advancements in the field of macromolecular science and engineering.