On Energy Assessment of Titanium Alloys Belt Grinding Involving Abrasive Wear Effects

IF 4.5 2区 工程技术 Q1 Engineering
Mingcong Li, Shudong Zhao, Heng Li, Yun Huang, Lai Zou, Wenxi Wang
{"title":"On Energy Assessment of Titanium Alloys Belt Grinding Involving Abrasive Wear Effects","authors":"Mingcong Li, Shudong Zhao, Heng Li, Yun Huang, Lai Zou, Wenxi Wang","doi":"10.1186/s10033-023-00941-2","DOIUrl":null,"url":null,"abstract":"Abstract Improved energy utilisation, precision, and quality are critical in the current trend of low-carbon green manufacturing. In this study, three abrasive belts were prepared at various wear stages and characterised quantitatively. The effects of abrasive belt wear on the specific grinding energy partition were investigated by evaluating robotic belt grinding of titanium plates. A specific grinding energy model based on subdivided tangential forces of cutting and sliding was developed for investigating specific energy and energy utilisation coefficient E UC . The surface morphology and Abbott–Firestone curves of the belts were introduced to analyse the experimental findings from the perspective of the micro cutting behaviour. The specific grinding energy increased with abrasive belt wear, especially when the belt was near the end of its life. Moreover, the belt wear could lead to a predominance change of sliding and chip formation energy. The highest E UC was observed in the middle of the belt life because of its retained sharp cutting edge and uniform distribution of the grit protrusion height. This study provides guidance for balancing the energy consumption and energy utilization efficiency of belt grinding.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"108 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00941-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Improved energy utilisation, precision, and quality are critical in the current trend of low-carbon green manufacturing. In this study, three abrasive belts were prepared at various wear stages and characterised quantitatively. The effects of abrasive belt wear on the specific grinding energy partition were investigated by evaluating robotic belt grinding of titanium plates. A specific grinding energy model based on subdivided tangential forces of cutting and sliding was developed for investigating specific energy and energy utilisation coefficient E UC . The surface morphology and Abbott–Firestone curves of the belts were introduced to analyse the experimental findings from the perspective of the micro cutting behaviour. The specific grinding energy increased with abrasive belt wear, especially when the belt was near the end of its life. Moreover, the belt wear could lead to a predominance change of sliding and chip formation energy. The highest E UC was observed in the middle of the belt life because of its retained sharp cutting edge and uniform distribution of the grit protrusion height. This study provides guidance for balancing the energy consumption and energy utilization efficiency of belt grinding.
含磨料磨损效应的钛合金带磨削能量评价
在当前低碳绿色制造的趋势下,提高能源利用率、精度和质量至关重要。本研究制备了三种不同磨损阶段的磨粒带,并对其进行了定量表征。通过对钛板机器人带磨削的评价,研究了砂带磨损对比磨削能量分配的影响。为了研究比能和能量利用系数,建立了基于切削力和滑动力细分的磨削比能模型。引入了带的表面形貌和abbot - firestone曲线,从微切削行为的角度分析了实验结果。比磨能随着砂带磨损的增加而增加,特别是在砂带接近使用寿命时。此外,皮带磨损会导致滑动和切屑形成能量的优势变化。在皮带寿命的中期,由于其保留了锋利的切削刃和磨粒突出高度的均匀分布,因此观察到最高的E - UC。该研究为平衡带式磨削的能耗和能量利用效率提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
4.80%
发文量
3097
审稿时长
8 months
期刊介绍: Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES). The publishing scopes of CJME follow with: Mechanism and Robotics, including but not limited to -- Innovative Mechanism Design -- Mechanical Transmission -- Robot Structure Design and Control -- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…) -- Tri-Co Robotics Intelligent Manufacturing Technology, including but not limited to -- Innovative Industrial Design -- Intelligent Machining Process -- Artificial Intelligence -- Micro- and Nano-manufacturing -- Material Increasing Manufacturing -- Intelligent Monitoring Technology -- Machine Fault Diagnostics and Prognostics Advanced Transportation Equipment, including but not limited to -- New Energy Vehicle Technology -- Unmanned Vehicle -- Advanced Rail Transportation -- Intelligent Transport System Ocean Engineering Equipment, including but not limited to --Equipment for Deep-sea Exploration -- Autonomous Underwater Vehicle Smart Material, including but not limited to --Special Metal Functional Materials --Advanced Composite Materials --Material Forming Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信