{"title":"Computable soft separation axioms","authors":"S. M. Elsayed, Keng Meng Ng","doi":"10.1017/s0960129523000336","DOIUrl":null,"url":null,"abstract":"Abstract Soft sets were introduced as a means to study objects that are not defined in an absolute way and have found applications in numerous areas of mathematics, decision theory, and in statistical applications. Soft topological spaces were first considered in Shabir and Naz ((2011). Computers & Mathematics with Applications 61 (7) 1786–1799) and soft separation axioms for soft topological spaces were studied in El-Shafei et al. ((2018). Filomat 32 (13) 4755–4771), El-Shafei and Al-Shami ((2020). Computational and Applied Mathematics 39 (3) 1–17), Al-shami ((2021). Mathematical Problems in Engineering 2021 ). In this paper, we introduce the effective versions of soft separation axioms. Specifically, we focus our attention on computable u-soft and computable p-soft separation axioms and investigate various relations between them. We also compare the effective and classical versions of these soft separation axioms.","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0960129523000336","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Soft sets were introduced as a means to study objects that are not defined in an absolute way and have found applications in numerous areas of mathematics, decision theory, and in statistical applications. Soft topological spaces were first considered in Shabir and Naz ((2011). Computers & Mathematics with Applications 61 (7) 1786–1799) and soft separation axioms for soft topological spaces were studied in El-Shafei et al. ((2018). Filomat 32 (13) 4755–4771), El-Shafei and Al-Shami ((2020). Computational and Applied Mathematics 39 (3) 1–17), Al-shami ((2021). Mathematical Problems in Engineering 2021 ). In this paper, we introduce the effective versions of soft separation axioms. Specifically, we focus our attention on computable u-soft and computable p-soft separation axioms and investigate various relations between them. We also compare the effective and classical versions of these soft separation axioms.
期刊介绍:
Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.