Georgios N. Dimitrakopoulos, Aristidis G. Vrahatis, Themis P. Exarchos, Marios G. Krokidis, Panagiotis Vlamos
{"title":"Drug and Protein Interaction Network Construction for Drug Repurposing in Alzheimer’s Disease","authors":"Georgios N. Dimitrakopoulos, Aristidis G. Vrahatis, Themis P. Exarchos, Marios G. Krokidis, Panagiotis Vlamos","doi":"10.3390/futurepharmacol3040045","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is one of the leading causes of death globally, significantly impacting countless families and communities. In parallel, recent advancements in molecular biology and network approaches, guided by the Network Medicine perspective, offer promising outcomes for Alzheimer’s disease research and treatment. In this study, we aim to discover candidate therapies for AD through drug repurposing. We combined a protein-protein interaction (PPI) network with drug-target interactions. Experimentally validated PPI data were collected from the PICKLE meta-database, while drugs and their protein targets were sourced from the DrugBank database. Then, based on RNA-Seq data, we first assigned weights to edges to indicate co-expression, and secondly, estimated differential gene expression to select a subset of genes potentially related to the disease. Finally, small subgraphs (modules) were extracted from the graph, centered on the genes of interest. The analysis revealed that even if there is no drug targeting several genes of interest directly, an existing drug might target a neighboring node, thus indirectly affecting the aforementioned genes. Our approach offers a promising method for treating various diseases by repurposing existing drugs, thereby reducing the cost and time of experimental procedures and paving the way for more precise Network Medicine strategies.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol3040045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease is one of the leading causes of death globally, significantly impacting countless families and communities. In parallel, recent advancements in molecular biology and network approaches, guided by the Network Medicine perspective, offer promising outcomes for Alzheimer’s disease research and treatment. In this study, we aim to discover candidate therapies for AD through drug repurposing. We combined a protein-protein interaction (PPI) network with drug-target interactions. Experimentally validated PPI data were collected from the PICKLE meta-database, while drugs and their protein targets were sourced from the DrugBank database. Then, based on RNA-Seq data, we first assigned weights to edges to indicate co-expression, and secondly, estimated differential gene expression to select a subset of genes potentially related to the disease. Finally, small subgraphs (modules) were extracted from the graph, centered on the genes of interest. The analysis revealed that even if there is no drug targeting several genes of interest directly, an existing drug might target a neighboring node, thus indirectly affecting the aforementioned genes. Our approach offers a promising method for treating various diseases by repurposing existing drugs, thereby reducing the cost and time of experimental procedures and paving the way for more precise Network Medicine strategies.