The Solution of Two-Dimensional Coupled Burgers’ Equation by G -Double Laplace Transform

IF 1.9 3区 数学 Q1 MATHEMATICS
Reem K. Alhefthi, Hassan Eltayeb
{"title":"The Solution of Two-Dimensional Coupled Burgers’ Equation by <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>G</mi> </math>-Double Laplace Transform","authors":"Reem K. Alhefthi, Hassan Eltayeb","doi":"10.1155/2023/4320612","DOIUrl":null,"url":null,"abstract":"The two-dimensional coupled Burgers’ equation, a foundational partial differential equation, boasts widespread relevance across numerous scientific domains. Attaining precise solutions to this equation stands as a pivotal endeavor, fostering a comprehensive understanding of both physical phenomena and mathematical models. In this article, we underscore the paramount significance of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>G</mi> </math> -double Laplace transform, a transformative mathematical tool. Leveraging this innovative technique, we furnish dependable and exact solutions, addressing both homogeneous and nonhomogeneous variants of the coupled Burgers’ equations. This approach not only delivers reliability but also serves as an invaluable instrument for delving deeper into the equation’s intricate behavior and its profound implications across diverse disciplinary landscapes.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"47 6 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4320612","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The two-dimensional coupled Burgers’ equation, a foundational partial differential equation, boasts widespread relevance across numerous scientific domains. Attaining precise solutions to this equation stands as a pivotal endeavor, fostering a comprehensive understanding of both physical phenomena and mathematical models. In this article, we underscore the paramount significance of the G -double Laplace transform, a transformative mathematical tool. Leveraging this innovative technique, we furnish dependable and exact solutions, addressing both homogeneous and nonhomogeneous variants of the coupled Burgers’ equations. This approach not only delivers reliability but also serves as an invaluable instrument for delving deeper into the equation’s intricate behavior and its profound implications across diverse disciplinary landscapes.
二维耦合Burgers方程的G -二重拉普拉斯变换解
二维耦合Burgers方程是一个基本的偏微分方程,在许多科学领域具有广泛的相关性。获得这个方程的精确解是一个关键的努力,培养对物理现象和数学模型的全面理解。在这篇文章中,我们强调了G -二重拉普拉斯变换的重要意义,它是一个变革性的数学工具。利用这一创新技术,我们提供了可靠和精确的解决方案,解决了耦合Burgers方程的齐次和非齐次变体。这种方法不仅提供了可靠性,而且作为一种宝贵的工具,可以更深入地研究方程的复杂行为及其在不同学科领域的深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信