Results on Katugampola Fractional Derivatives and Integrals

IF 0.7 Q2 MATHEMATICS
Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha
{"title":"Results on Katugampola Fractional Derivatives and Integrals","authors":"Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha","doi":"10.28924/2291-8639-21-2023-113","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
关于Katugampola分数阶导数和积分的结果
本文给出了一种新的关于Katugampola导数和Katugampola积分的定义。特别地,我们定义了α∈(m-1, m)阶函数f从a开始的(左)分数阶导数和以b结束的(右)分数阶导数,其中m∈n,然后给出了与这些算子有关的一些性质,如线性、乘积法则、商法则、幂法则、链式法则和常函数的消失导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信