Combination of Engineered Expression of Polysialic Acid on Transplanted Schwann Cells and in Injured Rat Spinal Cord Promotes Significant Axonal Growth and Functional Recovery

Fangyou Gao, Yi Zhang, Dongsheng Wu, Juan Luo, Svetlana Gushchina, Xuenong Bo
{"title":"Combination of Engineered Expression of Polysialic Acid on Transplanted Schwann Cells and in Injured Rat Spinal Cord Promotes Significant Axonal Growth and Functional Recovery","authors":"Fangyou Gao, Yi Zhang, Dongsheng Wu, Juan Luo, Svetlana Gushchina, Xuenong Bo","doi":"10.3390/neuroglia4040016","DOIUrl":null,"url":null,"abstract":"Providing cellular support and modifying the glial scar around the lesion are two key strategies for promoting axonal regeneration after spinal cord injury. We showed previously that over-expressing polysialic acid (PSA) on Schwann cells (SCs) by lentiviral vector (LV)-mediated expression of polysialyltransferase (PST) facilitated their integration and migration in the injured spinal cord. We also showed that PSA over-expression in the injured spinal cord modified the glial scar and promoted the growth of ascending sensory axons. In this study, we combined the PST/SC transplantation with LV/PST injection in spinal cords after dorsal column transection and found the combined treatments led to faster and more profound locomotor functional recovery compared with animals receiving combined GFP/SC transplantation with LV/GFP injection. Histological examination showed significantly more injured corticospinal axons growing close to the lesion/transplant borders and into the caudal spinal cord in the PST group than in the GFP group. We also found over -expressing PSA around the lesion site did not cause allodynia and hyperalgesia in our injury model. These results demonstrate the promising therapeutic benefit of over-expressing PSA in transplanted SCs and spinal cord in promoting axonal growth and restoring motor function.","PeriodicalId":74275,"journal":{"name":"Neuroglia (Basel, Switzerland)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroglia (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neuroglia4040016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Providing cellular support and modifying the glial scar around the lesion are two key strategies for promoting axonal regeneration after spinal cord injury. We showed previously that over-expressing polysialic acid (PSA) on Schwann cells (SCs) by lentiviral vector (LV)-mediated expression of polysialyltransferase (PST) facilitated their integration and migration in the injured spinal cord. We also showed that PSA over-expression in the injured spinal cord modified the glial scar and promoted the growth of ascending sensory axons. In this study, we combined the PST/SC transplantation with LV/PST injection in spinal cords after dorsal column transection and found the combined treatments led to faster and more profound locomotor functional recovery compared with animals receiving combined GFP/SC transplantation with LV/GFP injection. Histological examination showed significantly more injured corticospinal axons growing close to the lesion/transplant borders and into the caudal spinal cord in the PST group than in the GFP group. We also found over -expressing PSA around the lesion site did not cause allodynia and hyperalgesia in our injury model. These results demonstrate the promising therapeutic benefit of over-expressing PSA in transplanted SCs and spinal cord in promoting axonal growth and restoring motor function.
在移植雪旺细胞和损伤大鼠脊髓中工程表达聚唾液酸可显著促进轴突生长和功能恢复
提供细胞支持和修复损伤周围的胶质瘢痕是促进脊髓损伤后轴突再生的两个关键策略。我们之前的研究表明,通过慢病毒载体(LV)介导的多唾液酸转移酶(PST)的表达,在雪旺细胞(SCs)上过表达多唾液酸(PSA),促进了它们在受损脊髓中的整合和迁移。我们还发现,受损脊髓中PSA的过表达改变了胶质瘢痕,促进了上行感觉轴突的生长。在本研究中,我们将脊髓背柱横切后的PST/SC移植与LV/GFP注射联合治疗,发现与GFP/SC联合移植与LV/GFP注射相比,联合治疗能更快、更深入地恢复动物的运动功能。组织学检查显示,与GFP组相比,PST组损伤的皮质脊髓轴突生长在靠近病变/移植边界的地方,并进入脊髓尾端。我们还发现,在我们的损伤模型中,病变部位周围过表达的PSA不会引起异常性疼痛和痛觉过敏。这些结果表明,在移植的SCs和脊髓中过表达PSA在促进轴突生长和恢复运动功能方面具有良好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信