Liouville type theorems for Kirchhoff sub-elliptic equations involving $\Delta_\lambda$-operators

Pub Date : 2023-09-23 DOI:10.12775/tmna.2022.071
Thi Thu Huong Nguyen, Dao Trong Quyet, Thi Hien Anh Vu
{"title":"Liouville type theorems for Kirchhoff sub-elliptic equations involving $\\Delta_\\lambda$-operators","authors":"Thi Thu Huong Nguyen, Dao Trong Quyet, Thi Hien Anh Vu","doi":"10.12775/tmna.2022.071","DOIUrl":null,"url":null,"abstract":"In this paper, we study the Kirchhoff elliptic equations of the form $$ -M(\\|\\nabla_\\lambda u\\|^2)\\Delta_\\lambda u=w(x)f(u) \\quad \\mbox{in }\\mathbb R^{N}, $$ where $M$ is a smooth monotone function, $w$ is a weight function and $f(u)$ is of the form $u^p, e^u$ or $-u^{-p}$. The operator $\\Delta_\\lambda$ is strongly degenerate and given by $$ \\Delta_\\lambda=\\sum_{j=1}^N \\frac{\\partial}{\\partial x_j}\\bigg(\\lambda_j^2(x)\\frac{\\partial }{\\partial x_j}\\bigg). $$ We shall prove some classifications of stable solutions to the equation above under general assumptions on $M$ and $\\lambda_j$, $j=1,\\ldots,N$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Kirchhoff elliptic equations of the form $$ -M(\|\nabla_\lambda u\|^2)\Delta_\lambda u=w(x)f(u) \quad \mbox{in }\mathbb R^{N}, $$ where $M$ is a smooth monotone function, $w$ is a weight function and $f(u)$ is of the form $u^p, e^u$ or $-u^{-p}$. The operator $\Delta_\lambda$ is strongly degenerate and given by $$ \Delta_\lambda=\sum_{j=1}^N \frac{\partial}{\partial x_j}\bigg(\lambda_j^2(x)\frac{\partial }{\partial x_j}\bigg). $$ We shall prove some classifications of stable solutions to the equation above under general assumptions on $M$ and $\lambda_j$, $j=1,\ldots,N$.
分享
查看原文
涉及$\Delta_\lambda$ -算子的Kirchhoff次椭圆方程的Liouville型定理
本文研究了形式为$$ -M(\|\nabla_\lambda u\|^2)\Delta_\lambda u=w(x)f(u) \quad \mbox{in }\mathbb R^{N}, $$的Kirchhoff椭圆方程,其中$M$为光滑单调函数,$w$为权函数,$f(u)$为$u^p, e^u$或$-u^{-p}$的形式。算子$\Delta_\lambda$是强退化的,由$$ \Delta_\lambda=\sum_{j=1}^N \frac{\partial}{\partial x_j}\bigg(\lambda_j^2(x)\frac{\partial }{\partial x_j}\bigg). $$给出。我们将在$M$和$\lambda_j$, $j=1,\ldots,N$上证明上述方程在一般假设下的稳定解的一些分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信