Topological complexity of $S^3/Q_8$ as fibrewise L-S category

IF 0.7 4区 数学 Q2 MATHEMATICS
Norio Iwase, Yuya Miyata
{"title":"Topological complexity of $S^3/Q_8$ as fibrewise L-S category","authors":"Norio Iwase, Yuya Miyata","doi":"10.12775/tmna.2022.068","DOIUrl":null,"url":null,"abstract":"In 2010, M. Sakai and the first author showed that the topological complexity of a space $X$ coincides with the fibrewise unpointed L-S category of a pointed fibrewise space $\\proj_{1} \\colon X \\times X \\to X$ with the diagonal map $\\Delta \\colon X \\to X \\times X$ as its section. In this paper, we describe our algorithm how to determine the fibrewise L-S category or the Topological Complexity of a topological spherical space form. Especially, for $S^3/Q_8$ where $Q_8$ is the quaternion group, we write a python code to realise the algorithm to determine its Topological Complexity.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"17 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.068","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2010, M. Sakai and the first author showed that the topological complexity of a space $X$ coincides with the fibrewise unpointed L-S category of a pointed fibrewise space $\proj_{1} \colon X \times X \to X$ with the diagonal map $\Delta \colon X \to X \times X$ as its section. In this paper, we describe our algorithm how to determine the fibrewise L-S category or the Topological Complexity of a topological spherical space form. Especially, for $S^3/Q_8$ where $Q_8$ is the quaternion group, we write a python code to realise the algorithm to determine its Topological Complexity.
$S^3/Q_8$的拓扑复杂度作为光纤的L-S范畴
2010年,M. Sakai和第一作者证明了空间$X$的拓扑复杂度与指向的纤维空间$\proj_{1} \冒号X \乘以X$的沿纤维无点L-S范畴重合,其对角线映射$\Delta \冒号X \到X \乘以X$为其截面。在本文中,我们描述了如何确定一个拓扑球面空间形式的纤维L-S范畴或拓扑复杂度的算法。特别是,对于$S^3/Q_8$,其中$Q_8$为四元数组,我们编写了python代码来实现该算法,以确定其拓扑复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信