A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth

Pub Date : 2023-09-23 DOI:10.12775/tmna.2022.058
Francisco S. B. Albuquerque, Jonison L. Carvalho, Marcelo F. Furtado, Everaldo S. Medeiros
{"title":"A planar Schrödinger-Poisson system with vanishing potentials and exponential critical growth","authors":"Francisco S. B. Albuquerque, Jonison L. Carvalho, Marcelo F. Furtado, Everaldo S. Medeiros","doi":"10.12775/tmna.2022.058","DOIUrl":null,"url":null,"abstract":"In this paper we look for ground state solutions of the elliptic system $$ \\begin{cases} -\\Delta u+V(x)u+\\gamma\\phi K(x)u = Q(x)f(u), &x\\in\\mathbb{R}^{2}, \\\\ \\Delta \\phi =K(x) u^{2}, &x\\in\\mathbb{R}^{2}, \\end{cases} $$% where $\\gamma> 0$ and the continuous potentials $V$, $K$, $Q$ satisfy some mild growth conditions and the nonlinearity $f$ has exponential critical growth. The key point of our approach is a new version of the Trudinger-Moser inequality for weighted Sobolev space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we look for ground state solutions of the elliptic system $$ \begin{cases} -\Delta u+V(x)u+\gamma\phi K(x)u = Q(x)f(u), &x\in\mathbb{R}^{2}, \\ \Delta \phi =K(x) u^{2}, &x\in\mathbb{R}^{2}, \end{cases} $$% where $\gamma> 0$ and the continuous potentials $V$, $K$, $Q$ satisfy some mild growth conditions and the nonlinearity $f$ has exponential critical growth. The key point of our approach is a new version of the Trudinger-Moser inequality for weighted Sobolev space.
分享
查看原文
具有消失势和指数临界增长的平面Schrödinger-Poisson系统
本文寻找椭圆系统的基态解 $$ \begin{cases} -\Delta u+V(x)u+\gamma\phi K(x)u = Q(x)f(u), &x\in\mathbb{R}^{2}, \\ \Delta \phi =K(x) u^{2}, &x\in\mathbb{R}^{2}, \end{cases} $$% where $\gamma> 0$ and the continuous potentials $V$, $K$, $Q$ satisfy some mild growth conditions and the nonlinearity $f$ has exponential critical growth. The key point of our approach is a new version of the Trudinger-Moser inequality for weighted Sobolev space.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信