{"title":"Ground state solution for a class of supercritical Hénon equation with variable exponent","authors":"Xiaojing Feng","doi":"10.12775/tmna.2022.065","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \\begin{cases} -\\Delta u=|x|^{\\alpha}|u|^{2^*_\\alpha-2+|x|^\\beta}u&\\text{in } B,\\\\ u=0 &\\text{on } \\partial B, \\end{cases} $$% where $B\\subset\\mathbb{R}^N$ $(N\\geq 3)$ is the unit ball, $\\alpha\\!> \\!0$, $ 0\\!< \\!\\beta\\!< \\!\\min\\{(N\\!+\\!\\alpha)/2,N\\!-\\!2\\}$ and $2^*_\\alpha=({2N+2\\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.
本文研究了下列变指数超临界hsamnon方程 $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.