Ground state solution for a class of supercritical Hénon equation with variable exponent

Pub Date : 2023-09-23 DOI:10.12775/tmna.2022.065
Xiaojing Feng
{"title":"Ground state solution for a class of supercritical Hénon equation with variable exponent","authors":"Xiaojing Feng","doi":"10.12775/tmna.2022.065","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \\begin{cases} -\\Delta u=|x|^{\\alpha}|u|^{2^*_\\alpha-2+|x|^\\beta}u&amp;\\text{in } B,\\\\ u=0 &amp;\\text{on } \\partial B, \\end{cases} $$% where $B\\subset\\mathbb{R}^N$ $(N\\geq 3)$ is the unit ball, $\\alpha\\!> \\!0$, $ 0\\!< \\!\\beta\\!< \\!\\min\\{(N\\!+\\!\\alpha)/2,N\\!-\\!2\\}$ and $2^*_\\alpha=({2N+2\\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the following supercritical Hénon equation with variable exponent $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.
分享
查看原文
一类变指数超临界hsamnon方程的基态解
本文研究了下列变指数超临界hsamnon方程 $$ \begin{cases} -\Delta u=|x|^{\alpha}|u|^{2^*_\alpha-2+|x|^\beta}u&\text{in } B,\\ u=0 &\text{on } \partial B, \end{cases} $$% where $B\subset\mathbb{R}^N$ $(N\geq 3)$ is the unit ball, $\alpha\!> \!0$, $ 0\!< \!\beta\!< \!\min\{(N\!+\!\alpha)/2,N\!-\!2\}$ and $2^*_\alpha=({2N+2\alpha})/({N-2})$. We obtain the existence of positive ground state solution by applying the mountain pass theorem, concentration-compactness principle and approximation techniques.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信