{"title":"Injectivity of non-singular planar maps with disconnecting curves in the eigenvalues space","authors":"Marco Sabatini","doi":"10.12775/tmna.2022.073","DOIUrl":null,"url":null,"abstract":"Fessler and Gutierrez \\cite{Fe}, \\cite{Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\\infty)$, then it is injective. We prove that the same holds replacing $(0,+\\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $\\partial P/\\partial x + \\partial Q/\\partial y$ is not a surjective function.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":"73 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fessler and Gutierrez \cite{Fe}, \cite{Gu} proved that if a non-singular planar map has Jacobian matrix without eigenvalues in $(0,+\infty)$, then it is injective. We prove that the same holds replacing $(0,+\infty)$ with any unbounded curve disconnecting the upper (lower) complex half-plane. Additionally we prove that a Jacobian map $(P,Q)$ is injective if $\partial P/\partial x + \partial Q/\partial y$ is not a surjective function.
期刊介绍:
Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.