A note on positive solutions of Lichnerowicz equations involving the $\Delta_\lambda$-Laplacian

Pub Date : 2023-09-23 DOI:10.12775/tmna.2022.076
Anh Tuan Duong, Thi Quynh Nguyen
{"title":"A note on positive solutions of Lichnerowicz equations involving the $\\Delta_\\lambda$-Laplacian","authors":"Anh Tuan Duong, Thi Quynh Nguyen","doi":"10.12775/tmna.2022.076","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the parabolic Lichnerowicz equation involving the $\\Delta_\\lambda$-Laplacian $$ v_t-\\Delta_\\lambda v=v^{-p-2}-v^p,\\quad v> 0, \\quad \\mbox{ in }\\mathbb R^N\\times\\mathbb R, $$ where $p> 0$ and $\\Delta_\\lambda$ is a sub-elliptic operator of the form $$ \\Delta_\\lambda=\\sum_{i=1}^N\\partial_{x_i}\\big(\\lambda_i^2\\partial_{x_i}\\big). $$ Under some general assumptions of $\\lambda_i$ introduced by A.E. Kogoj and E. Lanconelli in Nonlinear Anal. {\\bf 75} (2012), no.\\ 12, 4637-4649, we shall prove a uniform lower bound of positive solutions of the equation provided that $p> 0$. Moreover, in the case $p> 1$, we shall show that the equation has only the trivial solution $v=1$. As a consequence, when $v$ is independent of the time variable, we obtain the similar results for the elliptic Lichnerowicz equation involving the $\\Delta_\\lambda$-Laplacian $$ -\\Delta_\\lambda u=u^{-p-2}-u^p,\\quad u> 0,\\quad \\mbox{in }\\mathbb R^N. $$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2022.076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the parabolic Lichnerowicz equation involving the $\Delta_\lambda$-Laplacian $$ v_t-\Delta_\lambda v=v^{-p-2}-v^p,\quad v> 0, \quad \mbox{ in }\mathbb R^N\times\mathbb R, $$ where $p> 0$ and $\Delta_\lambda$ is a sub-elliptic operator of the form $$ \Delta_\lambda=\sum_{i=1}^N\partial_{x_i}\big(\lambda_i^2\partial_{x_i}\big). $$ Under some general assumptions of $\lambda_i$ introduced by A.E. Kogoj and E. Lanconelli in Nonlinear Anal. {\bf 75} (2012), no.\ 12, 4637-4649, we shall prove a uniform lower bound of positive solutions of the equation provided that $p> 0$. Moreover, in the case $p> 1$, we shall show that the equation has only the trivial solution $v=1$. As a consequence, when $v$ is independent of the time variable, we obtain the similar results for the elliptic Lichnerowicz equation involving the $\Delta_\lambda$-Laplacian $$ -\Delta_\lambda u=u^{-p-2}-u^p,\quad u> 0,\quad \mbox{in }\mathbb R^N. $$
分享
查看原文
涉及$\Delta_\lambda$ -拉普拉斯式的Lichnerowicz方程正解的注记
在A.E. Kogoj和E. Lanconelli在《非线性分析》 (2012),no. 1中引入了$\lambda_i$的一些一般假设下,我们研究了含有$\Delta_\lambda$ -拉普拉斯方程$$ v_t-\Delta_\lambda v=v^{-p-2}-v^p,\quad v> 0, \quad \mbox{ in }\mathbb R^N\times\mathbb R, $$的抛物型Lichnerowicz方程,其中$p> 0$和$\Delta_\lambda$是一个形式为$$ \Delta_\lambda=\sum_{i=1}^N\partial_{x_i}\big(\lambda_i^2\partial_{x_i}\big). $$的次椭圆算子。12, 4637-4649,我们将证明方程正解的一致下界,只要{\bf}$p> 0$。此外,在$p> 1$的情况下,我们将证明方程只有平凡解$v=1$。因此,当$v$与时间变量无关时,对于涉及$\Delta_\lambda$ - laplace的椭圆Lichnerowicz方程,我们得到了类似的结果 $$ -\Delta_\lambda u=u^{-p-2}-u^p,\quad u> 0,\quad \mbox{in }\mathbb R^N. $$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信