Zhen Wang, Yini Chen, Liangyu Liu, Hao Yuan, Li Zou
{"title":"Current Effect on Wave Condition around Island in the South China Sea","authors":"Zhen Wang, Yini Chen, Liangyu Liu, Hao Yuan, Li Zou","doi":"10.1175/jtech-d-23-0015.1","DOIUrl":null,"url":null,"abstract":"Abstract Currents have a significant impact on wave parameters around islands. In this study, high-resolution unsteady current simulations based on island geography and wind fields from Weather Research and Forecasting (WRF) Model are used as input sources. The wave action balance model uses an unstructured grid to assess the wave conditions in the Atoll during Typhoon Noul. The characteristic wave parameters, with and without the effect of currents, are compared with the field observation data, including significant wave height, wave period, and the spatial distribution of significant wave height. The results show that simulated significant wave heights and wave periods are close to observed data, considering the effect of currents. The energy and shape of the spectrum are also verified during Typhoon Noul, and the observed agreement is improved when considering the currents. The effects of current within the Atoll are relatively weaker compared to the surroundings, while stronger current effects are observed in the deeper water outside the Atoll. Refraction caused by current expands the area of moderate sea state behind the island. Significance Statement Several innovations of this article are as follows: 1) the influence of currents on wave conditions at the Atoll; 2) exploring the impact of currents using key parameters, such as significant wave height, wave period, and wave spectrum, especially during the passage of Typhoon Noul; 3) swell emerges as the dominant factor influencing wave conditions as the center of Typhoon Noul gradually moves away; and 4) refraction caused by current expands the area of moderate sea state behind the island.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":"129 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0015.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Currents have a significant impact on wave parameters around islands. In this study, high-resolution unsteady current simulations based on island geography and wind fields from Weather Research and Forecasting (WRF) Model are used as input sources. The wave action balance model uses an unstructured grid to assess the wave conditions in the Atoll during Typhoon Noul. The characteristic wave parameters, with and without the effect of currents, are compared with the field observation data, including significant wave height, wave period, and the spatial distribution of significant wave height. The results show that simulated significant wave heights and wave periods are close to observed data, considering the effect of currents. The energy and shape of the spectrum are also verified during Typhoon Noul, and the observed agreement is improved when considering the currents. The effects of current within the Atoll are relatively weaker compared to the surroundings, while stronger current effects are observed in the deeper water outside the Atoll. Refraction caused by current expands the area of moderate sea state behind the island. Significance Statement Several innovations of this article are as follows: 1) the influence of currents on wave conditions at the Atoll; 2) exploring the impact of currents using key parameters, such as significant wave height, wave period, and wave spectrum, especially during the passage of Typhoon Noul; 3) swell emerges as the dominant factor influencing wave conditions as the center of Typhoon Noul gradually moves away; and 4) refraction caused by current expands the area of moderate sea state behind the island.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.