Performance Benchmarking of Different Methods to Solve Gauss-Newton Trust Region Subproblems

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM
SPE Journal Pub Date : 2023-10-01 DOI:10.2118/212180-pa
Guohua Gao, Horacio Florez, Jeroen Vink, Carl Blom, Terence J. Wells, Jan Fredrik Edvard Saaf
{"title":"Performance Benchmarking of Different Methods to Solve Gauss-Newton Trust Region Subproblems","authors":"Guohua Gao, Horacio Florez, Jeroen Vink, Carl Blom, Terence J. Wells, Jan Fredrik Edvard Saaf","doi":"10.2118/212180-pa","DOIUrl":null,"url":null,"abstract":"Summary The Gauss-Newton (GN) trust region optimization methods perform robustly but may introduce significant overhead cost when using the conventional matrix factorization method to solve the associated GN trust region subproblem (GNTRS). Solving a GNTRS involves solving a nonlinear equation using an iterative Newton-Raphson (NR) method. In each NR iteration, a symmetric linear system can be solved by different matrix factorization methods, including Cholesky decomposition (CD), eigenvalue decomposition (EVD), and singular value decomposition (SVD). Because CD fails to factorize a singular symmetric matrix, we propose solving a GNTRS using the robust EVD method. In this paper, we analyze the performances of different methods to solve a GNTRS using different matrix factorization subroutines in LAPACK with different options and settings. The cost of solving a GNTRS mainly depends on the number of observed data (m) and the number of uncertainty parameters (n). When n≤m, we recommend directly solving the original GNTRS with n variables. When n>m, we propose an indirect method that transforms the original GNTRS with n variables to a new problem with m unknowns. The proposed indirect method can significantly reduce the computational cost by dimension reduction. However, dimension reduction may introduce numerical errors, which, in turn, may result in accuracy degradation and cause failure of convergence using the popular iterative NR method. To further improve the overall performance, we introduce a numerical error indicator to terminate the iterative NR process when numerical errors become dominant. Finally, we benchmarked the performances of different approaches on a set of testing problems with different settings. Our results confirm that the GNTRS solver using the EVD method together with the modified NR method performs the best, being both robust (no failure for all testing problems) and efficient (consuming comparable CPU time to other methods).","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":"45 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/212180-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The Gauss-Newton (GN) trust region optimization methods perform robustly but may introduce significant overhead cost when using the conventional matrix factorization method to solve the associated GN trust region subproblem (GNTRS). Solving a GNTRS involves solving a nonlinear equation using an iterative Newton-Raphson (NR) method. In each NR iteration, a symmetric linear system can be solved by different matrix factorization methods, including Cholesky decomposition (CD), eigenvalue decomposition (EVD), and singular value decomposition (SVD). Because CD fails to factorize a singular symmetric matrix, we propose solving a GNTRS using the robust EVD method. In this paper, we analyze the performances of different methods to solve a GNTRS using different matrix factorization subroutines in LAPACK with different options and settings. The cost of solving a GNTRS mainly depends on the number of observed data (m) and the number of uncertainty parameters (n). When n≤m, we recommend directly solving the original GNTRS with n variables. When n>m, we propose an indirect method that transforms the original GNTRS with n variables to a new problem with m unknowns. The proposed indirect method can significantly reduce the computational cost by dimension reduction. However, dimension reduction may introduce numerical errors, which, in turn, may result in accuracy degradation and cause failure of convergence using the popular iterative NR method. To further improve the overall performance, we introduce a numerical error indicator to terminate the iterative NR process when numerical errors become dominant. Finally, we benchmarked the performances of different approaches on a set of testing problems with different settings. Our results confirm that the GNTRS solver using the EVD method together with the modified NR method performs the best, being both robust (no failure for all testing problems) and efficient (consuming comparable CPU time to other methods).
求解高斯-牛顿信赖域子问题不同方法的性能比较
摘要高斯-牛顿(GN)信赖域优化方法具有鲁棒性,但在使用传统的矩阵分解方法求解相关的GN信赖域子问题(GNTRS)时可能会引入较大的开销。求解GNTRS涉及使用迭代Newton-Raphson (NR)方法求解非线性方程。在每次NR迭代中,对称线性系统可以通过不同的矩阵分解方法求解,包括Cholesky分解(CD)、特征值分解(EVD)和奇异值分解(SVD)。由于CD不能分解奇异对称矩阵,我们提出用鲁棒EVD方法求解GNTRS。在本文中,我们分析了在LAPACK中使用不同的矩阵分解子程序在不同的选项和设置下求解GNTRS的不同方法的性能。求解一个GNTRS的代价主要取决于观测数据的个数(m)和不确定参数的个数(n),当n≤m时,我们建议直接求解n个变量的原始GNTRS。当n>m时,我们提出了一种间接方法,将原来的n个变量的GNTRS转换为一个含有m个未知数的新问题。所提出的间接方法通过降维可以显著降低计算成本。然而,降维可能会引入数值误差,进而导致精度下降,并导致常用迭代NR方法的收敛失败。为了进一步提高整体性能,我们引入数值误差指标,在数值误差占主导地位时终止迭代NR过程。最后,我们在一组不同设置的测试问题上对不同方法的性能进行基准测试。我们的研究结果证实,使用EVD方法和改进的NR方法的GNTRS求解器表现最好,具有鲁棒性(所有测试问题都没有失败)和效率(与其他方法消耗相当的CPU时间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信