A Least Absolute Shrinkage and Selection Operator-Derived Predictive Model for Postoperative Respiratory Failure in a Heterogeneous Adult Elective Surgery Patient Population

Jacqueline C. Stocking PhD, RN , Sandra L. Taylor PhD , Sili Fan MS , Theodora Wingert MD , Christiana Drake PhD , J. Matthew Aldrich MD , Michael K. Ong MD, PhD, FACP , Alpesh N. Amin MD, MACP, FACC , Rebecca A. Marmor MD , Laura Godat MD, FACS , Maxime Cannesson MD, PhD , Michael A. Gropper MD, PhD , Garth H. Utter MD, FACS , Christian E. Sandrock MD, MPH , Christian Bime MD , Jarrod Mosier MD , Vignesh Subbian PhD , Jason Y. Adams MD , Nicholas J. Kenyon MD , Timothy E. Albertson MD, PhD , Ivo Abraham PhD, RN
{"title":"A Least Absolute Shrinkage and Selection Operator-Derived Predictive Model for Postoperative Respiratory Failure in a Heterogeneous Adult Elective Surgery Patient Population","authors":"Jacqueline C. Stocking PhD, RN ,&nbsp;Sandra L. Taylor PhD ,&nbsp;Sili Fan MS ,&nbsp;Theodora Wingert MD ,&nbsp;Christiana Drake PhD ,&nbsp;J. Matthew Aldrich MD ,&nbsp;Michael K. Ong MD, PhD, FACP ,&nbsp;Alpesh N. Amin MD, MACP, FACC ,&nbsp;Rebecca A. Marmor MD ,&nbsp;Laura Godat MD, FACS ,&nbsp;Maxime Cannesson MD, PhD ,&nbsp;Michael A. Gropper MD, PhD ,&nbsp;Garth H. Utter MD, FACS ,&nbsp;Christian E. Sandrock MD, MPH ,&nbsp;Christian Bime MD ,&nbsp;Jarrod Mosier MD ,&nbsp;Vignesh Subbian PhD ,&nbsp;Jason Y. Adams MD ,&nbsp;Nicholas J. Kenyon MD ,&nbsp;Timothy E. Albertson MD, PhD ,&nbsp;Ivo Abraham PhD, RN","doi":"10.1016/j.chstcc.2023.100025","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Postoperative respiratory failure (PRF) is associated with increased hospital charges and worse patient outcomes. Reliable prediction models can help to guide postoperative planning to optimize care, to guide resource allocation, and to foster shared decision-making with patients.</p></div><div><h3>Research Question</h3><p>Can a predictive model be developed to accurately identify patients at high risk of PRF?</p></div><div><h3>Study Design and Methods</h3><p>In this single-site proof-of-concept study, we used structured query language to extract, transform, and load electronic health record data from 23,999 consecutive adult patients admitted for elective surgery (2014-2021). Our primary outcome was PRF, defined as mechanical ventilation after surgery of &gt; 48 h. Predictors of interest included demographics, comorbidities, and intraoperative factors. We used logistic regression to build a predictive model and the least absolute shrinkage and selection operator procedure to select variables and to estimate model coefficients. We evaluated model performance using optimism-corrected area under the receiver operating curve and area under the precision-recall curve and calculated sensitivity, specificity, positive and negative predictive values, and Brier scores.</p></div><div><h3>Results</h3><p>Two hundred twenty-five patients (0.94%) demonstrated PRF. The 18-variable predictive model included: operations on the cardiovascular, nervous, digestive, urinary, or musculoskeletal system; surgical specialty orthopedic (nonspine); Medicare or Medicaid (as the primary payer); race unknown; American Society of Anesthesiologists class ≥ III; BMI of 30 to 34.9 kg/m<sup>2</sup>; anesthesia duration (per hour); net fluid at end of the operation (per liter); median intraoperative F<span>io</span><sub>2</sub>, end title CO<sub>2</sub>, heart rate, and tidal volume; and intraoperative vasopressor medications. The optimism-corrected area under the receiver operating curve was 0.835 (95% CI, 0.808-0.862) and the area under the precision-recall curve was 0.156 (95% CI, 0.105-0.203).</p></div><div><h3>Interpretation</h3><p>This single-center proof-of-concept study demonstrated that a structured query language extract, transform, and load process, based on readily available patient and intraoperative variables, can be used to develop a prediction model for PRF. This PRF prediction model is scalable for multicenter research. Clinical applications include decision support to guide postoperative level of care admission and treatment decisions.</p></div>","PeriodicalId":93934,"journal":{"name":"CHEST critical care","volume":"1 3","pages":"Article 100025"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949788423000254/pdfft?md5=fb3f513258f554f0177f2414d1ec69f5&pid=1-s2.0-S2949788423000254-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CHEST critical care","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949788423000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Postoperative respiratory failure (PRF) is associated with increased hospital charges and worse patient outcomes. Reliable prediction models can help to guide postoperative planning to optimize care, to guide resource allocation, and to foster shared decision-making with patients.

Research Question

Can a predictive model be developed to accurately identify patients at high risk of PRF?

Study Design and Methods

In this single-site proof-of-concept study, we used structured query language to extract, transform, and load electronic health record data from 23,999 consecutive adult patients admitted for elective surgery (2014-2021). Our primary outcome was PRF, defined as mechanical ventilation after surgery of > 48 h. Predictors of interest included demographics, comorbidities, and intraoperative factors. We used logistic regression to build a predictive model and the least absolute shrinkage and selection operator procedure to select variables and to estimate model coefficients. We evaluated model performance using optimism-corrected area under the receiver operating curve and area under the precision-recall curve and calculated sensitivity, specificity, positive and negative predictive values, and Brier scores.

Results

Two hundred twenty-five patients (0.94%) demonstrated PRF. The 18-variable predictive model included: operations on the cardiovascular, nervous, digestive, urinary, or musculoskeletal system; surgical specialty orthopedic (nonspine); Medicare or Medicaid (as the primary payer); race unknown; American Society of Anesthesiologists class ≥ III; BMI of 30 to 34.9 kg/m2; anesthesia duration (per hour); net fluid at end of the operation (per liter); median intraoperative Fio2, end title CO2, heart rate, and tidal volume; and intraoperative vasopressor medications. The optimism-corrected area under the receiver operating curve was 0.835 (95% CI, 0.808-0.862) and the area under the precision-recall curve was 0.156 (95% CI, 0.105-0.203).

Interpretation

This single-center proof-of-concept study demonstrated that a structured query language extract, transform, and load process, based on readily available patient and intraoperative variables, can be used to develop a prediction model for PRF. This PRF prediction model is scalable for multicenter research. Clinical applications include decision support to guide postoperative level of care admission and treatment decisions.

在异质成人择期手术患者群体中,最小绝对收缩和选择操作者导出的术后呼吸衰竭预测模型
背景:术后呼吸衰竭(PRF)与住院费用增加和患者预后恶化相关。可靠的预测模型有助于指导术后计划,优化护理,指导资源分配,促进与患者共同决策。研究问题:是否可以开发一种预测模型来准确识别PRF高风险患者?研究设计和方法在这项单站点概念验证研究中,我们使用结构化查询语言提取、转换和加载来自23,999名连续接受择期手术的成年患者(2014-2021)的电子健康记录数据。我们的主要终点是PRF,定义为手术后机械通气;感兴趣的预测因素包括人口统计学、合并症和术中因素。我们使用逻辑回归建立预测模型,最小绝对收缩和选择算子程序来选择变量和估计模型系数。我们使用乐观修正的受试者工作曲线下面积和精确召回曲线下面积来评估模型的性能,并计算灵敏度、特异性、阳性和阴性预测值以及Brier评分。结果PRF 225例(0.94%)。18变量预测模型包括:心血管、神经、消化、泌尿或肌肉骨骼系统的手术;外科专科骨科(非脊柱);医疗保险或医疗补助(作为主要付款人);种族未知;美国麻醉医师学会三级以上;BMI 30 ~ 34.9 kg/m2;麻醉时间(每小时);操作结束时的净流体(每升);术中中位Fio2、终末CO2、心率、潮气量;术中血管加压药物。乐观校正的受试者工作曲线下面积为0.835 (95% CI, 0.808 ~ 0.862),精密度-召回曲线下面积为0.156 (95% CI, 0.105 ~ 0.203)。这项单中心概念验证研究表明,基于现成的患者和术中变量,结构化查询语言提取、转换和加载过程可用于开发PRF的预测模型。该PRF预测模型适用于多中心研究。临床应用包括决策支持,以指导术后护理水平的入院和治疗决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CHEST critical care
CHEST critical care Critical Care and Intensive Care Medicine, Pulmonary and Respiratory Medicine
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信