{"title":"Lower Bound Estimation for A Family of High-dimensional Sparse Covariance Matrices","authors":"Huimin Li, Youming Liu","doi":"10.1142/s0219691323500455","DOIUrl":null,"url":null,"abstract":"Lower bound estimation plays an important role for establishing the minimax risk. A key step in lower bound estimation is deriving a lower bound of the affinity between two probability measures. This paper provides a simple method to estimate the affinity between mixture probability measures. Then we apply the lower bound of the affinity to establish the minimax lower bound for a family of sparse covariance matrices, which contains Cai–Ren–Zhou’s theorem in [T. Cai, Z. Ren and H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat. 10(1) (2016) 1–59] as a special example.","PeriodicalId":50282,"journal":{"name":"International Journal of Wavelets Multiresolution and Information Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wavelets Multiresolution and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691323500455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Lower bound estimation plays an important role for establishing the minimax risk. A key step in lower bound estimation is deriving a lower bound of the affinity between two probability measures. This paper provides a simple method to estimate the affinity between mixture probability measures. Then we apply the lower bound of the affinity to establish the minimax lower bound for a family of sparse covariance matrices, which contains Cai–Ren–Zhou’s theorem in [T. Cai, Z. Ren and H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat. 10(1) (2016) 1–59] as a special example.
期刊介绍:
International Journal of Wavelets, Multiresolution and Information Processing (hereafter referred to as IJWMIP) is a bi-monthly publication for theoretical and applied papers on the current state-of-the-art results of wavelet analysis, multiresolution and information processing.
Papers related to the IJWMIP theme are especially solicited, including theories, methodologies, algorithms and emerging applications. Topics of interest of the IJWMIP include, but are not limited to:
1. Wavelets:
Wavelets and operator theory
Frame and applications
Time-frequency analysis and applications
Sparse representation and approximation
Sampling theory and compressive sensing
Wavelet based algorithms and applications
2. Multiresolution:
Multiresolution analysis
Multiscale approximation
Multiresolution image processing and signal processing
Multiresolution representations
Deep learning and neural networks
Machine learning theory, algorithms and applications
High dimensional data analysis
3. Information Processing:
Data sciences
Big data and applications
Information theory
Information systems and technology
Information security
Information learning and processing
Artificial intelligence and pattern recognition
Image/signal processing.