{"title":"Noise-Robust Scream Detection using Wave-U-Net","authors":"Noboru HAYASAKA, Riku KASAI, Takuya FUTAGAMI","doi":"10.1587/transfun.2023ssl0001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a noise-robust scream detection method with the aim of expanding the scream detection system, a sound-based security system. The proposed method uses enhanced screams using Wave-U-Net, which was effective as a noise reduction method for noisy screams. However, the enhanced screams showed different frequency components from clean screams and erroneously emphasized frequency components similar to scream in noise. Therefore, Wave-U-Net was applied even in the process of training Gaussian mixture models, which are discriminators. We conducted detection experiments using the proposed method in various noise environments and determined that the false acceptance rate was reduced by an average of 2.1% or more compared with the conventional method.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023ssl0001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a noise-robust scream detection method with the aim of expanding the scream detection system, a sound-based security system. The proposed method uses enhanced screams using Wave-U-Net, which was effective as a noise reduction method for noisy screams. However, the enhanced screams showed different frequency components from clean screams and erroneously emphasized frequency components similar to scream in noise. Therefore, Wave-U-Net was applied even in the process of training Gaussian mixture models, which are discriminators. We conducted detection experiments using the proposed method in various noise environments and determined that the false acceptance rate was reduced by an average of 2.1% or more compared with the conventional method.
期刊介绍:
Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry:
(1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments.
(2) Reports on development of measurement technology and various applied technologies.
(3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc.
(4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.