Development of a digital employee rating evaluation system (DERES) based on machine learning algorithms and 360-degree method

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gulnar Balakayeva, Mukhit Zhanuzakov, Gaukhar Kalmenova
{"title":"Development of a digital employee rating evaluation system (DERES) based on machine learning algorithms and 360-degree method","authors":"Gulnar Balakayeva, Mukhit Zhanuzakov, Gaukhar Kalmenova","doi":"10.1515/jisys-2023-0008","DOIUrl":null,"url":null,"abstract":"Abstract Increasing the efficiency of an enterprise largely depends on the productivity of its employees, which must be properly assessed and the correct assessment of the contribution of each employee is important. In this regard, this article is devoted to a study conducted by the authors on the development of a digital employee rating system (DERES). The study was conducted on the basis of machine learning technologies and modern assessment methods that will allow companies to evaluate the performance of their departments, analyze the competencies of the employees and predict the rating of employees in the future. The authors developed a 360-degree employee rating model and a rating prediction model using regression machine learning algorithms. The article also analyzed the results obtained using the employee evaluation model, which showed that the performance of the tested employees is reduced due to remote work. Using DERES, a rating analysis of a real business company was carried out with recommendations for improving the efficiency of employees. An analysis of the forecasting results obtained using the rating prediction model developed by the authors showed that personal development and relationship are key parameters in predicting the future rating of employees. In addition, the authors provide a detailed description of the developed DERES information system, main components, and architecture.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"2016 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Increasing the efficiency of an enterprise largely depends on the productivity of its employees, which must be properly assessed and the correct assessment of the contribution of each employee is important. In this regard, this article is devoted to a study conducted by the authors on the development of a digital employee rating system (DERES). The study was conducted on the basis of machine learning technologies and modern assessment methods that will allow companies to evaluate the performance of their departments, analyze the competencies of the employees and predict the rating of employees in the future. The authors developed a 360-degree employee rating model and a rating prediction model using regression machine learning algorithms. The article also analyzed the results obtained using the employee evaluation model, which showed that the performance of the tested employees is reduced due to remote work. Using DERES, a rating analysis of a real business company was carried out with recommendations for improving the efficiency of employees. An analysis of the forecasting results obtained using the rating prediction model developed by the authors showed that personal development and relationship are key parameters in predicting the future rating of employees. In addition, the authors provide a detailed description of the developed DERES information system, main components, and architecture.
基于机器学习算法和360度方法的数字化员工评价系统(DERES)的开发
企业效率的提高在很大程度上取决于企业员工的生产力,必须对员工的生产力进行正确的评估,正确评估每个员工的贡献是很重要的。在这方面,本文致力于作者对数字员工评级系统(DERES)的开发进行的研究。该研究是在机器学习技术和现代评估方法的基础上进行的,这些方法将使公司能够评估其部门的绩效,分析员工的能力并预测未来员工的评级。作者使用回归机器学习算法开发了360度员工评级模型和评级预测模型。本文还对使用员工评价模型得到的结果进行了分析,结果表明被测试员工的绩效由于远程工作而降低。使用DERES,对一家真实商业公司进行评级分析,并提出提高员工效率的建议。运用所建立的评价预测模型对预测结果进行分析,发现个人发展和人际关系是预测员工未来评价的关键参数。此外,作者还对开发的DERES信息系统、主要组件和体系结构进行了详细的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信