Problems of forecasting the length of the assembly cycle of complex products realized in the MTO (make-to-order) model

Jolanta Brzozowska, Arkadiusz Gola, Monika Kulisz
{"title":"Problems of forecasting the length of the assembly cycle of complex products realized in the MTO (make-to-order) model","authors":"Jolanta Brzozowska, Arkadiusz Gola, Monika Kulisz","doi":"10.7862/tiam.2023.3.2","DOIUrl":null,"url":null,"abstract":"This article presents the problem of forecasting the length of machine assembly cycles in make-to-order production (Make-to-Order). The model of Make-to-Order production and the technological process of manufacturing the finished product are presented. The possibility of developing a novel method, using artificial intelligence solutions, to estimate machine assembly times based on historical company data on manufacturing times for structurally similar components, is described. It is assumed that the result of the developed method will be an intelligent system supporting efficient and accurate estimation of machine assembly time, ready for implementation in production conditions. Such data as part availability, human resource availability and novelty factor will be used as input data for learning the neural network, while the output variable during learning the neural network will be the actual machine assembly time.","PeriodicalId":499284,"journal":{"name":"Technologia i Automatyzacja Montażu","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologia i Automatyzacja Montażu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7862/tiam.2023.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the problem of forecasting the length of machine assembly cycles in make-to-order production (Make-to-Order). The model of Make-to-Order production and the technological process of manufacturing the finished product are presented. The possibility of developing a novel method, using artificial intelligence solutions, to estimate machine assembly times based on historical company data on manufacturing times for structurally similar components, is described. It is assumed that the result of the developed method will be an intelligent system supporting efficient and accurate estimation of machine assembly time, ready for implementation in production conditions. Such data as part availability, human resource availability and novelty factor will be used as input data for learning the neural network, while the output variable during learning the neural network will be the actual machine assembly time.
基于MTO模型的复杂产品装配周期预测问题
本文提出了在按订单生产中预测机器装配周期长度的问题。给出了订制生产模型和制造成品的工艺流程。描述了开发一种使用人工智能解决方案的新方法的可能性,该方法基于结构相似部件的制造时间的历史公司数据来估计机器组装时间。假设所开发的方法的结果将是一个智能系统,支持机器装配时间的有效和准确的估计,准备在生产条件下实施。零件可用性、人力资源可用性和新颖性等数据将作为学习神经网络的输入数据,而学习神经网络时的输出变量将是实际的机器装配时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信