Effective drift estimates for random walks on graph products

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Kunal Chawla
{"title":"Effective drift estimates for random walks on graph products","authors":"Kunal Chawla","doi":"10.1214/23-ecp546","DOIUrl":null,"url":null,"abstract":"We find uniform lower bounds on the drift for a large family of random walks on graph products, of the form P(|Zn|≤κn)≤e−κn for κ>0. This includes the simple random walk for a right-angled Artin group with a sparse defining graph. This is done by extending an argument of Gouëzel, along with the combinatorial notion of a piling introduced by Crisp, Godelle, and Wiest. We do not use any moment conditions, instead considering random walks which alternate between one measure uniformly distributed on vertex groups, and another measure over which we make no assumptions.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"165 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ecp546","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We find uniform lower bounds on the drift for a large family of random walks on graph products, of the form P(|Zn|≤κn)≤e−κn for κ>0. This includes the simple random walk for a right-angled Artin group with a sparse defining graph. This is done by extending an argument of Gouëzel, along with the combinatorial notion of a piling introduced by Crisp, Godelle, and Wiest. We do not use any moment conditions, instead considering random walks which alternate between one measure uniformly distributed on vertex groups, and another measure over which we make no assumptions.
图积上随机游走的有效漂移估计
我们找到了图积上一大群随机漫步漂移的一致下界,其形式为P(|Zn|≤κn)≤e - κn,且κ>0。这包括具有稀疏定义图的直角Artin群的简单随机漫步。这是通过扩展Gouëzel的论证,以及Crisp、Godelle和Wiest引入的堆叠的组合概念来实现的。我们不使用任何力矩条件,而是考虑随机游走,随机游走在一个均匀分布在顶点组上的度量和另一个我们不做假设的度量之间交替。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信